Display options
Share it on

Front Microbiol. 2016 Jul 28;7:1152. doi: 10.3389/fmicb.2016.01152. eCollection 2016.

Influence of Environmental Factors on Phage-Bacteria Interaction and on the Efficacy and Infectivity of Phage P100.

Frontiers in microbiology

Susanne Fister, Christian Robben, Anna K Witte, Dagmar Schoder, Martin Wagner, Peter Rossmanith

Affiliations

  1. Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria.
  2. Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria.
  3. Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary Medicine Vienna, Austria.

PMID: 27516757 PMCID: PMC4964841 DOI: 10.3389/fmicb.2016.01152

Abstract

When using bacteriophages to control food-borne bacteria in food production plants and processed food, it is crucial to consider that environmental conditions influence their stability. These conditions can also affect the physiological state of bacteria and consequently host-virus interaction and the effectiveness of the phage ability to reduce bacteria numbers. In this study we investigated the stability, binding, and replication capability of phage P100 and its efficacy to control Listeria monocytogenes under conditions typically encountered in dairy plants. The influences of SDS, Lutensol AO 7, salt, smear water, and different temperatures were investigated. Results indicate that phage P100 is stable and able to bind to the host under most conditions tested. Replication was dependent upon the growth of L. monocytogenes and efficacy was higher when bacterial growth was reduced by certain environmental conditions. In long-term experiments at different temperatures phages were initially able to reduce bacteria up to seven log10 units after 2 weeks at 4°C. However, thereafter, re-growth and development of phage-resistant L. monocytogenes isolates were encountered.

Keywords: L. monocytogenes; ListexTM P100; bacteriophage P100; environmental influence; host–phage interaction; resistance

References

  1. Annu Rev Food Sci Technol. 2016;7:439-56 - PubMed
  2. Curr Opin Biotechnol. 2014 Apr;26:45-9 - PubMed
  3. Curr Opin Biotechnol. 2011 Apr;22(2):157-63 - PubMed
  4. Food Microbiol. 2011 May;28(3):518-25 - PubMed
  5. Front Microbiol. 2013 Nov 29;4:358 - PubMed
  6. Biotechnol Lett. 2007 Jul;29(7):995-1003 - PubMed
  7. Bacteriophage. 2012 Jan 1;2(1):50-54 - PubMed
  8. J Appl Microbiol. 2006 Aug;101(2):377-86 - PubMed
  9. J Ind Microbiol Biotechnol. 2013 Oct;40(10):1105-16 - PubMed
  10. Appl Microbiol Biotechnol. 2007 Sep;76(3):513-9 - PubMed
  11. Appl Environ Microbiol. 2004 Mar;70(3):1633-40 - PubMed
  12. Methods Mol Biol. 2009;501:69-76 - PubMed
  13. Extremophiles. 2005 Aug;9(4):289-96 - PubMed
  14. Res Microbiol. 2006 Oct;157(8):763-71 - PubMed
  15. Water Air Soil Pollut. 2015;226(3):45 - PubMed
  16. J Virol. 2002 Jun;76(11):5557-64 - PubMed
  17. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14250-5 - PubMed
  18. Front Microbiol. 2014 Feb 18;5:51 - PubMed
  19. Food Microbiol. 2013 Aug;35(1):38-48 - PubMed
  20. CMAJ. 1988 Mar 1;138(5):413-8 - PubMed
  21. Lett Appl Microbiol. 2008 Dec;47(6):479-85 - PubMed
  22. Adv Appl Microbiol. 1984;30:133-68 - PubMed
  23. Appl Environ Microbiol. 1997 Aug;63(8):3144-50 - PubMed
  24. J Gen Physiol. 1949 May 20;32(5):579-94 - PubMed
  25. Microbiol Mol Biol Rev. 2000 Mar;64(1):69-114 - PubMed
  26. Trends Microbiol. 2005 Jun;13(6):278-84 - PubMed
  27. Foodborne Pathog Dis. 2010 Apr;7(4):427-34 - PubMed
  28. Appl Environ Microbiol. 2009 Jan;75(1):93-100 - PubMed
  29. Nature. 1999 Jun 10;399(6736):541-8 - PubMed
  30. Appl Environ Microbiol. 2003 Jun;69(6):3192-202 - PubMed
  31. Appl Environ Microbiol. 2003 Aug;69(8):4519-26 - PubMed
  32. Antimicrob Agents Chemother. 2006 Sep;50(9):2912-8 - PubMed
  33. PLoS One. 2011 Jan 06;6(1):e16192 - PubMed
  34. Bacteriophage. 2011 Mar;1(2):94-100 - PubMed
  35. J Bacteriol. 2004 Jun;186(12):3677-86 - PubMed
  36. Bacteriophage. 2011 Jan;1(1):46-49 - PubMed
  37. Appl Microbiol Biotechnol. 2011 May;90(3):851-9 - PubMed
  38. FEMS Microbiol Rev. 2009 Jul;33(4):801-19 - PubMed
  39. Food Microbiol. 2014 Apr;38:137-42 - PubMed
  40. Future Microbiol. 2013 Jun;8(6):769-83 - PubMed
  41. Methods Mol Biol. 2009;501:81-5 - PubMed
  42. Microbes Infect. 2007 Aug;9(10):1236-43 - PubMed
  43. Microbiology. 1996 Apr;142 ( Pt 4):985-92 - PubMed
  44. Curr Pharm Biotechnol. 2010 Jan;11(1):58-68 - PubMed
  45. Regul Toxicol Pharmacol. 2005 Dec;43(3):301-12 - PubMed
  46. Int J Food Microbiol. 2012 Apr 2;155(1-2):82-8 - PubMed
  47. Lett Appl Microbiol. 2003;36(1):50-3 - PubMed
  48. Appl Environ Microbiol. 2003 Nov;69(11):6628-33 - PubMed
  49. Folia Microbiol (Praha). 2011 May;56(3):191-200 - PubMed
  50. Int J Food Microbiol. 2005 Sep 25;104(1):83-91 - PubMed
  51. Antimicrob Agents Chemother. 1999 Feb;43(2):314-21 - PubMed
  52. Int J Food Microbiol. 2002 Feb 25;73(1):71-81 - PubMed
  53. Front Microbiol. 2014 Aug 20;5:442 - PubMed
  54. Appl Environ Microbiol. 2012 Dec;78(24):8666-75 - PubMed
  55. J Appl Bacteriol. 1984 Jun;56(3):439-47 - PubMed
  56. PLoS Biol. 2005 May;3(5):e182 - PubMed

Publication Types