Display options
Share it on

Springerplus. 2016 Sep 15;5(1):1574. doi: 10.1186/s40064-016-3232-z. eCollection 2016.

Crop management as a driving force of plant growth promoting rhizobacteria physiology.

SpringerPlus

Juliana Melo, Manuela Carolino, Luís Carvalho, Patrícia Correia, Rogério Tenreiro, Sandra Chaves, Ana I Meleiro, Sávio B de Souza, Teresa Dias, Cristina Cruz, Alessandro C Ramos

Affiliations

  1. Ecosystems Ecology Unit, Universidade Vila Velha (UVV), Vila Velha, ES 29102-920 Brazil ; Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal.
  2. Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal.
  3. Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal.
  4. Physiology and Biochemistry of Microorganisms Lab., Center of Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, 28013-620 Brazil.

PMID: 27652147 PMCID: PMC5025401 DOI: 10.1186/s40064-016-3232-z

Abstract

Crop management systems influence plant productivity and nutrient use efficiency, as well as plant growth-promoting rhizobacteria (PGPR), which are known to influence the growth of plants via phytohormone production, phosphate solubilization, nitrogen (N) fixation and antimicrobial activity. The objective of this study was to compare the influence of two crop management system on microbial PGPR features. PGPR isolated from the rhizospheres of Carica papaya L. grown under two distinct management systems (conventional and organic) were identified and characterized. The 12 strains most efficient in solubilizing inorganic phosphate belonged to the genera Burkholderia, Klebsiella, and Leclercia. N fixation was observed in the strains B. vietnamiensis from the conventional farming system and B. vietnamiensis, B. cepacia and Leclercia sp. from the organic farming system. The B. vietnamiensis, B. cepacia, Klebsiella sp. and Klebsiella sp. isolates showed antifungal activity, while Leclercia sp. did not. The strains B. vietnamiensis and Enterobcter sp. (isolated from the conventional farming system) and Klebsiella sp. (isolated from the organic farming system) were efficient at solubilizing phosphate, producing phytohormones and siderophores, and inhibiting the mycelial growth of various phytopathogenic fungi (Botrytis cinerea, Pestalotia sp., Alternaria sp., Phoma sp., Fusarium culmorum, Geotrichum candidum). Physiological differences between the isolates from the two crop management regimes were distinguishable after 10 years of distinct management.

Keywords: Biocontrol; Conventional farming; Fungi; Nitrogen fixation; Organic farming; Rhizosphere

References

  1. Appl Environ Microbiol. 1995 May;61(5):1720-6 - PubMed
  2. Annu Rev Plant Biol. 2008;59:341-63 - PubMed
  3. Microbiology. 2002 Jul;148(Pt 7):2097-109 - PubMed
  4. J Microbiol Biol Educ. 2011 May 19;12(1):51-3 - PubMed
  5. Microbiol Res. 2012 Jun 20;167(6):358-63 - PubMed
  6. Anal Biochem. 1987 Jan;160(1):47-56 - PubMed
  7. Int J Phytoremediation. 2013;15(10):991-1009 - PubMed
  8. J Exp Bot. 2005 Jul;56(417):1761-78 - PubMed
  9. Plant Physiol. 1951 Jan;26(1):192-5 - PubMed
  10. Int J Microbiol. 2014;2014:426483 - PubMed
  11. Appl Microbiol Biotechnol. 2006 Jun;71(2):137-44 - PubMed
  12. Biotechnol Adv. 1999 Oct;17(4-5):319-39 - PubMed
  13. Syst Appl Microbiol. 2013 Oct;36(7):483-9 - PubMed
  14. FEMS Microbiol Rev. 2009 Jan;33(1):191-205 - PubMed
  15. Science. 2010 Feb 12;327(5967):812-8 - PubMed
  16. Nature. 2015 Jun 4;522(7554):98-101 - PubMed
  17. J Gen Microbiol. 1991 Oct;137(10):2273-9 - PubMed
  18. Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):2067-72 - PubMed
  19. Microb Cell Fact. 2014 May 08;13:66 - PubMed
  20. Microb Ecol. 2013 Aug;66(2):375-84 - PubMed
  21. Appl Environ Microbiol. 1997 Nov;63(11):4485-93 - PubMed
  22. Environ Microbiol. 2005 Mar;7(3):396-404 - PubMed
  23. Mol Plant Microbe Interact. 2013 May;26(5):546-53 - PubMed
  24. World J Microbiol Biotechnol. 2012 Aug;28(8):2615-23 - PubMed
  25. Springerplus. 2013 Oct 31;2:587 - PubMed
  26. FEMS Microbiol Lett. 1999 Jan 1;170(1):265-70 - PubMed
  27. Microb Ecol. 2011 Apr;61(3):606-18 - PubMed
  28. J Microbiol. 2014 Aug;52(8):689-95 - PubMed
  29. Microb Biotechnol. 2014 May;7(3):196-208 - PubMed
  30. BMC Microbiol. 2012 Oct 16;12:234 - PubMed
  31. Microbiol Res. 2008;163(2):173-81 - PubMed
  32. Appl Environ Microbiol. 2007 Aug;73(16):5308-19 - PubMed
  33. Aust J Biol Sci. 1971 Oct;24(5):925-44 - PubMed
  34. Microbiology. 1994 May;140 ( Pt 5):1069-77 - PubMed
  35. Annu Rev Microbiol. 2009;63:541-56 - PubMed
  36. Appl Environ Microbiol. 1993 Mar;59(3):695-700 - PubMed
  37. New Phytol. 2015 Oct;208(2):324-9 - PubMed
  38. Appl Environ Microbiol. 2008 Jul;74(14):4574-9 - PubMed
  39. Science. 2003 Dec 19;302(5653):2107-9 - PubMed

Publication Types