Display options
Share it on

Ecol Evol. 2016 May 23;6(12):4141-59. doi: 10.1002/ece3.2172. eCollection 2016 Jun.

Trait adaptation promotes species coexistence in diverse predator and prey communities.

Ecology and evolution

Toni Klauschies, David A Vasseur, Ursula Gaedke

Affiliations

  1. Department of Ecology and Ecosystem Modeling Institute for Biochemistry and Biology University of Potsdam Am Neuen Palais 10 D-14469 Potsdam Germany.
  2. Department of Ecology and Evolutionary Biology Yale University New Haven, Connecticut 06520.
  3. Department of Ecology and Ecosystem Modeling Institute for Biochemistry and Biology University of Potsdam Am Neuen Palais 10 D-14469 Potsdam Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB) D-14195 Berlin Germany.

PMID: 27516870 PMCID: PMC4972238 DOI: 10.1002/ece3.2172

Abstract

Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time-invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator-prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to previous studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species.

Keywords: Coadaptation; equalizing and stabilizing mechanisms; maintenance of functional diversity; niche and fitness differences; supersaturated species coexistence; trait convergence and divergence

References

  1. Theor Popul Biol. 2002 Nov;62(3):281-95 - PubMed
  2. Science. 2003 Feb 28;299(5611):1388-91 - PubMed
  3. Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10854-61 - PubMed
  4. Science. 2004 Oct 1;306(5693):111-4 - PubMed
  5. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6230-5 - PubMed
  6. Proc Biol Sci. 2006 Apr 22;273(1589):983-90 - PubMed
  7. Evolution. 2006 Mar;60(3):427-39 - PubMed
  8. Am Nat. 2006 Mar;167(3):329-42 - PubMed
  9. Trends Ecol Evol. 2006 Apr;21(4):178-85 - PubMed
  10. Ecology. 2006 Jun;87(6):1599-604 - PubMed
  11. Trends Ecol Evol. 2006 Oct;21(10):531-3 - PubMed
  12. Ecology. 2006 Jul;87(7 Suppl):S150-62 - PubMed
  13. Am Nat. 2006 Nov;168(5):645-59 - PubMed
  14. Ecol Lett. 2007 Feb;10(2):95-104 - PubMed
  15. Science. 1985 Mar 15;227(4692):1347-9 - PubMed
  16. Science. 2007 Sep 14;317(5844):1561-3 - PubMed
  17. Am Nat. 2008 Feb;171(2):162-75 - PubMed
  18. Am Nat. 2008 Nov;172(5):667-80 - PubMed
  19. Am Nat. 1998 Jul;152(1):114-28 - PubMed
  20. Nature. 2008 Nov 13;456(7219):235-8 - PubMed
  21. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 12;364(1523):1579-91 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11641-5 - PubMed
  23. Science. 2009 Sep 4;325(5945):1244-6 - PubMed
  24. Ecol Lett. 2009 Oct;12(10):1079-90 - PubMed
  25. Ecol Lett. 2010 Aug 1;13(8):1019-29 - PubMed
  26. Ecology. 2010 Jun;91(6):1748-62 - PubMed
  27. Ecol Lett. 2011 Feb;14(2):202-9 - PubMed
  28. Trends Ecol Evol. 2011 Apr;26(4):183-92 - PubMed
  29. Am Nat. 2011 Mar;177(3):389-95 - PubMed
  30. Ecology. 2011 May;92(5):1157-65 - PubMed
  31. Am Nat. 2011 Sep;178(3):287-304 - PubMed
  32. Ecology. 2011 Aug;92(8):1582-93 - PubMed
  33. Am Nat. 2011 Oct;178(4):501-14 - PubMed
  34. Am Nat. 2011 Nov;178(5):E96-E109 - PubMed
  35. PLoS One. 2011;6(11):e27357 - PubMed
  36. Theor Popul Biol. 2012 Mar;81(2):113-8 - PubMed
  37. Trends Ecol Evol. 2012 Apr;27(4):244-52 - PubMed
  38. Ecol Lett. 2012 Mar;15(3):243-50 - PubMed
  39. J Theor Biol. 2012 Jul 21;305:96-102 - PubMed
  40. Am Nat. 2013 Dec;182(6):704-17 - PubMed
  41. Ecology. 2013 Oct;94(10):2166-72 - PubMed
  42. Am Nat. 2014 Mar;183(3):394-409 - PubMed
  43. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7486-91 - PubMed
  44. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):797-802 - PubMed
  45. Heredity (Edinb). 2015 Oct;115(4):293-301 - PubMed
  46. Ecol Lett. 2015 Nov;18(11):1262-1269 - PubMed
  47. Evolution. 1976 Jun;30(2):314-334 - PubMed
  48. Evolution. 1986 Nov;40(6):1229-1247 - PubMed
  49. Evolution. 1992 Apr;46(2):317-333 - PubMed
  50. Evolution. 1997 Dec;51(6):1742-1750 - PubMed
  51. Evolution. 1993 Jun;47(3):982-985 - PubMed
  52. Am Nat. 2000 Oct;156(S4):S45-S61 - PubMed
  53. Theor Popul Biol. 1985 Apr;27(2):105-19 - PubMed
  54. J Math Biol. 1996;34(5-6):579-612 - PubMed
  55. Theor Popul Biol. 1977 Oct;12(2):197-29 - PubMed

Publication Types