Display options
Share it on

Sci Rep. 2016 Sep 22;6:33903. doi: 10.1038/srep33903.

Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica.

Scientific reports

Ae Kyung Park, Il-Sup Kim, Hackwon Do, Byung Wook Jeon, Chang Woo Lee, Soo Jung Roh, Seung Chul Shin, Hyun Park, Young-Saeng Kim, Yul-Ho Kim, Ho-Sung Yoon, Jun Hyuck Lee, Han-Woo Kim

Affiliations

  1. Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
  2. School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
  3. Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
  4. Research Institute for Ulleung-do &Dok-do, Kyungpook National University, Daegu 41566, Republic of Korea.
  5. Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea.

PMID: 27652777 PMCID: PMC5031999 DOI: 10.1038/srep33903

Abstract

Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD

References

  1. Mol Microbiol. 1998 Nov;30(4):895-903 - PubMed
  2. J Mol Biol. 2000 Dec 1;304(3):397-410 - PubMed
  3. Trends Plant Sci. 2002 Sep;7(9):405-10 - PubMed
  4. Plant J. 2002 Dec;32(6):891-904 - PubMed
  5. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639 - PubMed
  6. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 - PubMed
  7. J Mol Biol. 2004 Feb 27;336(4):889-902 - PubMed
  8. Biochim Biophys Acta. 2004 Oct 4;1658(3):181-6 - PubMed
  9. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2184-95 - PubMed
  10. Planta. 2007 Apr;225(5):1255-64 - PubMed
  11. Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12276-81 - PubMed
  12. J Mol Biol. 2007 Oct 19;373(2):382-400 - PubMed
  13. PLoS One. 2007 Oct 31;2(10):e1092 - PubMed
  14. Plant Cell Environ. 2008 Aug;31(8):1086-96 - PubMed
  15. Proteins. 2009 Dec;77(4):867-80 - PubMed
  16. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 - PubMed
  17. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5 - PubMed
  18. J Biol Chem. 2010 Apr 30;285(18):13616-20 - PubMed
  19. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  20. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9 - PubMed
  21. Plant Physiol Biochem. 2010 Dec;48(12):909-30 - PubMed
  22. Appl Environ Microbiol. 2011 Jul;77(13):4634-46 - PubMed
  23. Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1244-8 - PubMed
  24. Science. 2015 Sep 4;349(6252):1072-5 - PubMed
  25. Sci Rep. 2016 Jan 18;6:19498 - PubMed
  26. PLoS One. 2016 Jul 08;11(7):e0158841 - PubMed
  27. Methods Enzymol. 1997;276:307-26 - PubMed
  28. Arch Biochem Biophys. 1988 Oct;266(1):32-40 - PubMed
  29. J Biol Chem. 1985 Oct 25;260(24):12920-6 - PubMed
  30. J Biol Chem. 1983 Feb 25;258(4):2593-8 - PubMed
  31. Plant Cell Physiol. 1994 Apr;35(3):425-37 - PubMed
  32. Proteins. 1994 Feb;18(2):161-73 - PubMed

Publication Types