Display options
Share it on

Pharmaceutics. 2010 Oct 14;2(4):321-338. doi: 10.3390/pharmaceutics2040321.

Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny.

Pharmaceutics

Binbing Ling, Caroline Aziz, Chris Wojnarowicz, Andrew Olkowski, Jane Alcorn

Affiliations

  1. College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, S7N5C9, Canada.
  2. Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
  3. Department of Veterinary Pathology, Prairie Diagnostic Services, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
  4. Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive Saskatoon, SK, S7N 5A8, Canada.
  5. College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, S7N5C9, Canada. [email protected].

PMID: 27721360 PMCID: PMC3967141 DOI: 10.3390/pharmaceutics2040321

Abstract

Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine) on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg) twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20). Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn) mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.

Keywords: L-carnitine; cefepime; drug-nutrient interaction; ontogeny; windows of susceptibility

References

  1. Mol Genet Metab. 2002 Nov;77(3):195-201 - PubMed
  2. Comp Biochem Physiol A Mol Integr Physiol. 2007 Sep;148(1):230-8 - PubMed
  3. Pediatr Clin North Am. 2009 Oct;56(5):1211-24 - PubMed
  4. Mol Genet Metab. 2008 Jun;94(2):162-6 - PubMed
  5. Am J Physiol Endocrinol Metab. 2008 May;294(5):E969-77 - PubMed
  6. Drug Metab Dispos. 2006 Mar;34(3):477-82 - PubMed
  7. Exp Biol Med (Maywood). 2003 Jan;228(1):15-23 - PubMed
  8. Biochem Biophys Res Commun. 1997 Jan 23;230(3):624-9 - PubMed
  9. Circulation. 1997 Oct 7;96(7):2190-6 - PubMed
  10. Proc Nutr Soc. 2004 Aug;63(3):397-403 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H283-9 - PubMed
  12. J Nutr. 1992 Dec;122(12):2430-9 - PubMed
  13. Am J Physiol Regul Integr Comp Physiol. 2001 Nov;281(5):R1553-61 - PubMed
  14. Am J Physiol. 1985 Dec;249(6 Pt 1):G770-85 - PubMed
  15. Biochim Biophys Acta. 1999 Oct 18;1441(1):85-92 - PubMed
  16. Pharmacol Ther. 2008 May;118(2):250-67 - PubMed
  17. Ann N Y Acad Sci. 2004 Nov;1033:30-41 - PubMed
  18. Early Hum Dev. 1998 Dec;53 Suppl:S43-50 - PubMed
  19. J Inherit Metab Dis. 2009 Apr;32(2):218-28 - PubMed
  20. J Biol Chem. 1997 Aug 8;272(32):19951-7 - PubMed
  21. Anal Biochem. 1972 Dec;50(2):509-18 - PubMed
  22. Ann Nutr Metab. 2008;52 Suppl 1:29-32 - PubMed
  23. J Biol Chem. 1966 Sep 10;241(17):4092-7 - PubMed
  24. Pharmacotherapy. 2005 Dec;25(12):1789-800 - PubMed
  25. Life Sci. 1981 Mar 2;28(9):1057-60 - PubMed
  26. Am J Clin Nutr. 1990 Feb;51(2):259-63 - PubMed
  27. Proc Biol Sci. 2005 Apr 7;272(1564):671-7 - PubMed
  28. J Biol Chem. 2002 Jan 18;277(3):1629-32 - PubMed
  29. Ann Nutr Metab. 2008;52(2):136-44 - PubMed
  30. J Biol Chem. 2000 Jan 21;275(3):1699-707 - PubMed
  31. Clin Pharmacokinet. 2006;45(11):1077-97 - PubMed
  32. Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S2-5 - PubMed
  33. Pediatr Res. 2006 Dec;60(6):717-23 - PubMed
  34. Mol Cell Biochem. 1998 Mar;180(1-2):33-41 - PubMed
  35. Biochim Biophys Acta. 2001 Jun 6;1512(2):273-84 - PubMed
  36. Am J Clin Nutr. 1993 Nov;58(5):660-5 - PubMed
  37. J Nutr. 2008 Jul;138(7):1317-22 - PubMed
  38. N Engl J Med. 1990 Dec 6;323(23):1593-600 - PubMed
  39. Toxicol Appl Pharmacol. 2005 Aug 7;206(2):215-8 - PubMed
  40. Eur J Biochem. 2003 Aug;270(16):3377-88 - PubMed
  41. AAPS PharmSci. 2000;2(3):E20 - PubMed
  42. Drug Discov Today Dis Mech. 2009;6(1-4):e31-e39 - PubMed
  43. Drug Metab Dispos. 2009 May;37(5):1009-16 - PubMed
  44. J Nutr. 1996 Jun;126(6):1673-82 - PubMed
  45. Clin Pharmacol Ther. 1994 Jun;55(6):681-92 - PubMed
  46. J Enzyme Inhib. 2001;16(2):177-83 - PubMed
  47. Br J Nutr. 1989 Jul;62(1):1-3 - PubMed

Publication Types