Display options
Share it on

J Vis. 2016 Sep 01;16(11):30. doi: 10.1167/16.11.30.

The crowding factor method applied to parafoveal vision.

Journal of vision

Saeideh Ghahghaei, Laura Walker

Affiliations

  1. The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA. [email protected]. http://www.ski.org/users/saeideh-ghahghaei.
  2. The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
  3. Envision Research Institute, Wichita, KS, USA. [email protected]. http://research.envisionus.com/Team/Laura-Walker.

PMID: 27690170 PMCID: PMC5054730 DOI: 10.1167/16.11.30

Abstract

Crowding increases with eccentricity and is most readily observed in the periphery. During natural, active vision, however, central vision plays an important role. Measures of critical distance to estimate crowding are difficult in central vision, as these distances are small. Any overlap of flankers with the target may create an overlay masking confound. The crowding factor method avoids this issue by simultaneously modulating target size and flanker distance and using a ratio to compare crowded to uncrowded conditions. This method was developed and applied in the periphery (Petrov & Meleshkevich, 2011b). In this work, we apply the method to characterize crowding in parafoveal vision (<3.5 visual degrees) with spatial uncertainty. We find that eccentricity and hemifield have less impact on crowding than in the periphery, yet radial/tangential asymmetries are clearly preserved. There are considerable idiosyncratic differences observed between participants. The crowding factor method provides a powerful tool for examining crowding in central and peripheral vision, which will be useful in future studies that seek to understand visual processing under natural, active viewing conditions.

References

  1. Vision Res. 1985;25(7):963-77 - PubMed
  2. J Vis. 2015 Feb 12;15(2):null - PubMed
  3. Vision Res. 1979;19(6):619-32 - PubMed
  4. J Vis. 2007 Apr 25;7(2):12.1-9 - PubMed
  5. J Vis. 2015;15(13):10 - PubMed
  6. Am J Ophthalmol. 1958 Jul;46(1 Pt 2):102-13 - PubMed
  7. J Vis. 2014 Dec 10;14(6):10 - PubMed
  8. Vision Res. 2011 May 25;51(10):1117-23 - PubMed
  9. J Vis. 2006 Mar 09;6(3):224-38 - PubMed
  10. Trends Cogn Sci. 2011 Jun;15(6):254-62 - PubMed
  11. Vision Res. 2005 Mar;45(5):617-33 - PubMed
  12. Vision Res. 2008 Aug;48(17):1777-90 - PubMed
  13. J Exp Psychol Hum Learn. 1980 Jul;6(4):391-9 - PubMed
  14. Nat Neurosci. 2008 Oct;11(10):1129-35 - PubMed
  15. J Vis. 2011 Nov 18;11(13):18 - PubMed
  16. Vision Res. 2011 Dec 8;51(23-24):2488-98 - PubMed
  17. Vision Res. 2003 Dec;43(27):2895-904 - PubMed
  18. Vision Res. 2006 Feb;46(3):417-25 - PubMed
  19. Vision Res. 1999 Aug;39(16):2729-37 - PubMed
  20. J Vis. 2010 Aug 18;10(10):16 - PubMed
  21. Nature. 1996 Sep 26;383(6598):334-7 - PubMed
  22. J Exp Psychol Hum Percept Perform. 2010 Jun;36(3):673-88 - PubMed
  23. Q J Exp Psychol (Hove). 2013;66(11):2085-91 - PubMed
  24. J Vis. 2007 Nov 26;7(2):24.1-11 - PubMed
  25. Nat Neurosci. 2012 Jan 08;15(3):463-9, S1-2 - PubMed
  26. Vision Res. 1992 Jul;32(7):1349-57 - PubMed
  27. J Vis. 2007 Jul 17;7(2):13.1-10 - PubMed
  28. J Vis. 2014 Sep 03;14(6):3 - PubMed
  29. Nature. 1970 Apr 11;226(5241):177-8 - PubMed
  30. Cogn Psychol. 2001 Nov;43(3):171-216 - PubMed
  31. Invest Ophthalmol. 1975 Jun;14(6):468-9 - PubMed
  32. Exp Brain Res. 2011 May;211(1):119-31 - PubMed
  33. Vision Res. 2008 Feb;48(5):635-54 - PubMed
  34. Vision Res. 1973 Apr;13(4):767-82 - PubMed
  35. J Vis. 2011 Apr 01;11(4):null - PubMed
  36. Q J Exp Psychol (Hove). 2013;66(3):453-70 - PubMed
  37. J Vis. 2010 Mar 23;10(3):1.1-14 - PubMed
  38. Vision Res. 2000;40(5):473-84 - PubMed
  39. J Vis. 2015;15(8):5 - PubMed
  40. J Vis. 2007 Feb 05;7(2):4.1-12 - PubMed

Publication Types

Grant support