Display options
Share it on

Cell Death Discov. 2015 Aug 17;1:15015. doi: 10.1038/cddiscovery.2015.15. eCollection 2015.

Involvement of inhibitory PAS domain protein in neuronal cell death in Parkinson's disease.

Cell death discovery

S Torii, S Kasai, A Suzuki, Y Todoroki, K Yokozawa, K-I Yasumoto, N Seike, H Kiyonari, Y Mukumoto, A Kakita, K Sogawa

Affiliations

  1. Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University , Sendai, Japan.
  2. Department of Pathology, Brain Research Institute, University of Niigata , Niigata, Japan.
  3. Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan.
  4. Genetic Engineering Team, RIKEN Center for Life Science Technologies , Kobe, Japan.

PMID: 27551449 PMCID: PMC4981001 DOI: 10.1038/cddiscovery.2015.15

Abstract

Inhibitory PAS domain protein (IPAS), a repressor of hypoxia-inducible factor-dependent transcription under hypoxia, was found to exert pro-apoptotic activity in oxidative stress-induced cell death. However, physiological and pathological processes associated with this activity are not known. Here we show that IPAS is a key molecule involved in neuronal cell death in Parkinson's disease (PD). IPAS was ubiquitinated by Parkin for proteasomal degradation following carbonyl cyanide m-chlorophenyl hydrazone treatment. Phosphorylation of IPAS at Thr12 by PTEN-induced putative kinase 1 (PINK1) was required for ubiquitination to occur. Activation of the PINK1-Parkin pathway attenuated IPAS-dependent apoptosis. IPAS was markedly induced in the midbrain following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and IPAS-deficient mice showed resistance to MPTP-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). A significant increase in IPAS expression was found in SNpc neurons in patients with sporadic PD. These results indicate a mechanism of neurodegeneration in PD.

References

  1. Neurotoxicol Teratol. 2002 Sep-Oct;24(5):565-9 - PubMed
  2. Hum Mol Genet. 2010 Dec 15;19(24):4861-70 - PubMed
  3. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a008888 - PubMed
  4. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a009332 - PubMed
  5. Curr Med Chem. 2011;18(28):4335-43 - PubMed
  6. J Cell Biol. 2010 Nov 29;191(5):933-42 - PubMed
  7. J Biochem. 2011 Sep;150(3):311-8 - PubMed
  8. J Clin Invest. 2006 Jul;116(7):1744-54 - PubMed
  9. J Biol Chem. 2008 May 16;283(20):13771-9 - PubMed
  10. Proc Natl Acad Sci U S A. 2007 May 8;104(19):8161-6 - PubMed
  11. Mov Disord. 2008 Mar 15;23(4):474-83 - PubMed
  12. Oncogene. 2003 Nov 13;22(51):8370-8 - PubMed
  13. J Biol Chem. 2002 Sep 6;277(36):32405-8 - PubMed
  14. Exp Neurol. 2009 Aug;218(2):235-46 - PubMed
  15. J Biol Chem. 2009 Jul 10;284(28):19077-89 - PubMed
  16. J Neurosci. 2010 Sep 1;30(35):11805-14 - PubMed
  17. J Biochem. 2013 Dec;154(6):561-7 - PubMed
  18. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18754-9 - PubMed
  19. Mov Disord. 2010;25 Suppl 1:S32-9 - PubMed
  20. Exp Neurol. 2000 Nov;166(1):29-43 - PubMed
  21. Cell Death Differ. 2013 Jul;20(7):920-30 - PubMed
  22. Nature. 2013 Apr 18;496(7445):372-6 - PubMed
  23. Biochemistry. 2007 Dec 11;46(49):14162-9 - PubMed
  24. Cell Death Differ. 2011 Nov;18(11):1711-25 - PubMed
  25. Science. 2013 Jun 21;340(6139):1451-5 - PubMed
  26. J Biol Chem. 2009 Oct 16;284(42):29065-76 - PubMed
  27. Nature. 2001 Nov 29;414(6863):550-4 - PubMed
  28. J Cell Biol. 2008 Dec 1;183(5):795-803 - PubMed
  29. Nature. 2013 May 9;497(7448):211-6 - PubMed
  30. Trends Neurosci. 2014 Jun;37(6):315-24 - PubMed
  31. J Neurosci. 2005 Aug 31;25(35):7968-78 - PubMed
  32. J Cell Biol. 2010 Apr 19;189(2):211-21 - PubMed
  33. Front Neurol. 2013 Jul 19;4:100 - PubMed
  34. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7531-6 - PubMed

Publication Types