Display options
Share it on

PLoS One. 2016 Sep 30;11(9):e0163882. doi: 10.1371/journal.pone.0163882. eCollection 2016.

Restricted Gene Flow among Lineages of Thrips tabaci Supports Genetic Divergence Among Cryptic Species Groups.

PloS one

Alana L Jacobson, Brian A Nault, Edward L Vargo, George G Kennedy

Affiliations

  1. Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America.
  2. Department of Entomology, Cornell University, Geneva, New York, United States of America.

PMID: 27690317 PMCID: PMC5045207 DOI: 10.1371/journal.pone.0163882

Abstract

Knowledge of the relative influence of population- versus species-level genetic variation is important to understand patterns of phenotypic variation and ecological relationships that exist among and within morphologically indistinguishable cryptic species and subspecies. In the case of cryptic species groups that are pests, such knowledge is also essential for devising effective population management strategies. The globally important crop pest Thrips tabaci is a taxonomically difficult group of putatively cryptic species. This study examines population genetic structure of T. tabaci and reproductive isolation among lineages of this species complex using microsatellite markers and mitochondrial COI sequences. Overall, genetic structure supports T. tabaci as a cryptic species complex, although limited interbreeding occurs between different clonal groups from the same lineage as well as between individuals from different lineages. These results also provide evidence that thelytoky and arrhenotoky are not fixed phenotypes among members of different T. tabaci lineages that have been generally associated with either reproductive mode. Possible biological and ecological factors contributing to these observations are discussed.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Mol Ecol. 1999 Jun;8(6):965-73 - PubMed
  2. Genetics. 2000 Jun;155(2):945-59 - PubMed
  3. Proc Biol Sci. 2001 May 22;268(1471):1011-6 - PubMed
  4. Heredity (Edinb). 2003 Mar;90(3):260-7 - PubMed
  5. J Econ Entomol. 2003 Dec;96(6):1843-8 - PubMed
  6. Mol Ecol. 2004 Jul;13(7):2101-6 - PubMed
  7. Heredity (Edinb). 2004 Oct;93(4):364-70 - PubMed
  8. Mol Ecol. 2005 Jul;14(8):2611-20 - PubMed
  9. Bioinformatics. 2006 Jun 1;22(11):1399-401 - PubMed
  10. Trends Ecol Evol. 2005 Sep;20(9):495-502 - PubMed
  11. Trends Ecol Evol. 2006 Jan;21(1):9; author reply 10 - PubMed
  12. J Econ Entomol. 2006 Oct;99(5):1798-804 - PubMed
  13. PLoS Genet. 2006 Dec;2(12):e190 - PubMed
  14. Phytopathology. 2002 Jun;92(6):603-9 - PubMed
  15. J Econ Entomol. 2009 Dec;102(6):2296-300 - PubMed
  16. Bull Entomol Res. 2010 Jun;100(3):359-66 - PubMed
  17. Bull Entomol Res. 2011 Apr;101(2):211-20 - PubMed
  18. Curr Biol. 2011 Mar 8;21(5):433-7 - PubMed
  19. Mol Ecol Resour. 2011 May;11(3):562-6 - PubMed
  20. Insect Mol Biol. 2013 Feb;22(1):12-7 - PubMed
  21. PLoS One. 2013;8(1):e54567 - PubMed
  22. PLoS One. 2013;8(1):e54484 - PubMed
  23. Heredity (Edinb). 2013 Sep;111(3):210-5 - PubMed
  24. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  25. Sci Rep. 2013 Nov 21;3:3286 - PubMed
  26. Bioinformatics. 2014 May 15;30(10):1488-90 - PubMed
  27. Evolution. 2014 Jul;68(7):1883-93 - PubMed
  28. PLoS Biol. 2014 Jul 01;12(7):e1001899 - PubMed
  29. PLoS One. 2014 Jul 03;9(7):e101791 - PubMed
  30. BMC Evol Biol. 2015 Feb 22;15:23 - PubMed
  31. Environ Entomol. 2015 Aug;44(4):921-30 - PubMed
  32. PLoS One. 2015 Sep 16;10(9):e0138353 - PubMed
  33. Evolution. 1999 Aug;53(4):1189-1199 - PubMed

Publication Types