Display options
Share it on

Sci Rep. 2016 Sep 22;6:33478. doi: 10.1038/srep33478.

Radiation endurance in Al.

Scientific reports

F García Ferré, A Mairov, L Ceseracciu, Y Serruys, P Trocellier, C Baumier, O Kaïtasov, R Brescia, D Gastaldi, P Vena, M G Beghi, L Beck, K Sridharan, F Di Fonzo

Affiliations

  1. Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (MI), Italia.
  2. Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, 53715 Wisconsin (WI), USA.
  3. Smart Materials, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (GE), Italia.
  4. Laboratoire JANNUS, DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris Saclay, F-91191 Gif-Sur-Yvette, France.
  5. CNRS/IN2P3/CSNSM/SEMIRAMIS/JANNUS-Orsay, Université Paris Sud, Bat. 108, 91400 Orsay, France.
  6. Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (GE), Italia.
  7. Dipartimento di Chimica, Materiali ed Ingegneria dei Materiali, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (MI), Italia.
  8. Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (MI), Italia.

PMID: 27653832 PMCID: PMC5031969 DOI: 10.1038/srep33478

Abstract

The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C -namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al

References

  1. Science. 2002 Mar 29;295(5564):2386 - PubMed
  2. Science. 2003 Mar 7;299(5612):1563-6 - PubMed
  3. Science. 2003 May 23;300(5623):1275-7 - PubMed
  4. Nat Mater. 2008 Sep;7(9):683-5 - PubMed
  5. Science. 2010 Mar 26;327(5973):1631-4 - PubMed
  6. Nature. 2012 Aug 16;488(7411):294-303 - PubMed
  7. Nat Commun. 2013;4:1377 - PubMed
  8. Nat Commun. 2013;4:2288 - PubMed
  9. Nat Commun. 2013;4:2483 - PubMed
  10. Adv Mater. 2013 Dec 23;25(48):6975-9 - PubMed
  11. Sci Rep. 2014 Jan 17;4:3737 - PubMed
  12. Phys Chem Chem Phys. 2014 May 7;16(17):8051-9 - PubMed
  13. Sci Rep. 2015 Jan 13;5:7746 - PubMed
  14. Sci Rep. 2015 Jan 15;5:7801 - PubMed
  15. Sci Rep. 2015 Mar 13;5:9095 - PubMed
  16. Sci Rep. 2015 Nov 12;5:16602 - PubMed
  17. Materials (Basel). 2016 Feb 06;9(2):null - PubMed
  18. Phys Rev B Condens Matter. 1995 Dec 15;52(24):17518-17522 - PubMed

Publication Types