Display options
Share it on

Front Microbiol. 2016 Sep 23;7:1487. doi: 10.3389/fmicb.2016.01487. eCollection 2016.

Aligning the Measurement of Microbial Diversity with Macroecological Theory.

Frontiers in microbiology

James C Stegen, Allen H Hurlbert, Ben Bond-Lamberty, Xingyuan Chen, Carolyn G Anderson, Rosalie K Chu, Francisco Dini-Andreote, Sarah J Fansler, Nancy J Hess, Malak Tfaily

Affiliations

  1. Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA.
  2. Biology Department and Curriculum in Environment and Ecology, University of North Carolina Chapel Hill, NC, USA.
  3. Pacific Northwest National Laboratory, Joint Global Change Research Institute College Park, MD, USA.
  4. Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division Richland, WA, USA.
  5. Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory Richland, WA, USA.
  6. Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen Groningen, Netherlands.

PMID: 27721808 PMCID: PMC5033968 DOI: 10.3389/fmicb.2016.01487

Abstract

The number of microbial operational taxonomic units (OTUs) within a community is akin to species richness within plant/animal ("macrobial") systems. A large literature documents OTU richness patterns, drawing comparisons to macrobial theory. There is, however, an unrecognized fundamental disconnect between OTU richness and macrobial theory: OTU richness is commonly estimated on a per-individual basis, while macrobial richness is estimated per-area. Furthermore, the range or extent of sampled environmental conditions can strongly influence a study's outcomes and conclusions, but this is not commonly addressed when studying OTU richness. Here we (

Keywords: OTU richness; boreal forest; niche conservatism; permafrost; rarefaction; soil; species energy theory; species richness

References

  1. Nat Rev Microbiol. 2012 May 14;10(7):497-506 - PubMed
  2. ISME J. 2012 Apr;6(4):724-32 - PubMed
  3. ISME J. 2014 Jun;8(6):1166-74 - PubMed
  4. Science. 2011 Sep 23;333(6050):1755-8 - PubMed
  5. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 - PubMed
  6. Ecol Lett. 2010 Oct;13(10):1310-24 - PubMed
  7. Microbiology. 2002 Jan;148(Pt 1):257-66 - PubMed
  8. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 - PubMed
  9. Ecol Lett. 2014 Apr;17(4):401-13 - PubMed
  10. Nature. 2012 Nov 15;491(7424):444-8 - PubMed
  11. Environ Microbiol Rep. 2015 Aug;7(4):649-57 - PubMed
  12. Am Nat. 2010 Aug;176(2):E50-65 - PubMed
  13. Am Nat. 2013 Apr;181(4):E83-90 - PubMed
  14. Environ Microbiol. 2010 Nov;12(11):2998-3006 - PubMed
  15. Adv Microb Physiol. 2009;55:1-79, 317 - PubMed
  16. Ecology. 2011 Apr;92(4):797-804 - PubMed

Publication Types