Display options
Share it on

Sci Rep. 2016 Sep 22;6:33675. doi: 10.1038/srep33675.

Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer.

Scientific reports

Honghui Li, Gui Wang, Zhiqiang Hao, Guozhong Zhang, Yubo Qing, Shuanghui Liu, Lili Qing, Weirong Pan, Lei Chen, Guichun Liu, Ruoping Zhao, Baoyu Jia, Luyao Zeng, Jianxiong Guo, Lixiao Zhao, Heng Zhao, Chaoxiang Lv, Kaixiang Xu, Wenmin Cheng, Hushan Li, Hong-Ye Zhao, Wen Wang, Hong-Jiang Wei

Affiliations

  1. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
  2. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
  3. College of Hetao, Bayannaoer 015000, China.
  4. Inner Mongolia Zhong-Ke-Zheng-Biao Biotech Co., Ltd, Bayannaoer 015400, China.
  5. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
  6. Reproductive &Developmental Laboratory, Southwest China Biodiversity Laboratory, Kunming 650203, China.
  7. Key Laboratory Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China.
  8. Bayannaoer Livestock Improvement Station, Bayannaoer 015000, China.

PMID: 27654750 PMCID: PMC5031972 DOI: 10.1038/srep33675

Abstract

Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth.

References

  1. J Biotechnol. 2014 Dec 20;192 Pt A:268-80 - PubMed
  2. J Anim Sci. 2000 Jun;78(6):1485-96 - PubMed
  3. Nat Rev Genet. 2004 Mar;5(3):202-12 - PubMed
  4. PLoS One. 2013 Aug 30;8(8):e72686 - PubMed
  5. Mol Biol Rep. 2014 Jan;41(1):209-15 - PubMed
  6. Genome Res. 1997 Sep;7(9):910-6 - PubMed
  7. Cell. 1992 Oct 30;71(3):383-90 - PubMed
  8. Nucleic Acids Res. 2011 Jul;39(12):e82 - PubMed
  9. PLoS One. 2013;8(3):e60216 - PubMed
  10. PLoS One. 2014 Sep 04;9(9):e106718 - PubMed
  11. PLoS One. 2007 Aug 29;2(8):e789 - PubMed
  12. Nat Biotechnol. 2013 Aug;31(8):684-6 - PubMed
  13. Annu Rev Cell Dev Biol. 2004;20:61-86 - PubMed
  14. PLoS One. 2014 Feb 21;9(2):e89631 - PubMed
  15. Mol Cell Biol. 2003 Oct;23(20):7230-42 - PubMed
  16. Sci Rep. 2015 Sep 24;5:14435 - PubMed
  17. Genome Res. 2010 Sep;20(9):1297-303 - PubMed
  18. J Anim Sci. 1973 Aug;37(2):536-45 - PubMed
  19. PLoS One. 2013;8(2):e57728 - PubMed
  20. Transgenic Res. 2015 Feb;24(1):147-53 - PubMed
  21. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  22. Nat Biotechnol. 2011 Feb;29(2):135-6 - PubMed
  23. Cell. 1993 Dec 31;75(7):1351-9 - PubMed
  24. Int J Biochem Cell Biol. 2013 Oct;45(10 ):2333-47 - PubMed
  25. Nat Genet. 1997 Sep;17(1):71-4 - PubMed
  26. Genes Dev. 1989 Dec;3(12B):2050-61 - PubMed
  27. J Genet Genomics. 2015 Aug 20;42(8):437-44 - PubMed
  28. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1248-57 - PubMed
  29. Int J Biochem Cell Biol. 2012 Feb;44(2):327-34 - PubMed
  30. PLoS One. 2013;8(3):e58521 - PubMed
  31. Science. 2014 Jun 6;344(6188):1168-73 - PubMed
  32. J Anat. 1983 Sep;137 (Pt 2):235-45 - PubMed
  33. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13904-9 - PubMed
  34. PLoS One. 2015 Aug 25;10(8):e0136690 - PubMed
  35. Nat Genet. 2006 Jul;38(7):813-8 - PubMed
  36. Nat Biotechnol. 2011 Aug 05;29(8):699-700 - PubMed
  37. PLoS One. 2012;7(1):e29896 - PubMed
  38. Nature. 1995 Mar 23;374(6520):360-3 - PubMed
  39. Curr Biol. 2014 Feb 17;24(4):404-8 - PubMed
  40. Nature. 1997 May 1;387(6628):83-90 - PubMed
  41. Avicenna J Med Biotechnol. 2013 Jul;5(3):186-92 - PubMed
  42. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9306-11 - PubMed
  43. Meta Gene. 2014 Jul 12;2:479-88 - PubMed
  44. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  45. Med Sci Sports Exerc. 2011 Oct;43(10):1828-35 - PubMed
  46. Genome Res. 2014 Jan;24(1):125-31 - PubMed
  47. PLoS Genet. 2007 May 25;3(5):e79 - PubMed
  48. Diabetes. 2012 Oct;61(10):2414-23 - PubMed
  49. Nat Protoc. 2013 Nov;8(11):2281-308 - PubMed
  50. Am J Physiol Cell Physiol. 2009 Mar;296(3):C525-34 - PubMed
  51. J Biol Chem. 2000 Dec 22;275(51):40235-43 - PubMed
  52. Bioinformatics. 2013 Nov 15;29(22):2931-2 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4318-22 - PubMed

Publication Types