Display options
Share it on

Cancer Microenviron. 2016 Dec;9(2):127-139. doi: 10.1007/s12307-016-0188-z. Epub 2016 Sep 21.

Stiffened Extracellular Matrix and Signaling from Stromal Fibroblasts via Osteoprotegerin Regulate Tumor Cell Invasion in a 3-D Tumor in Situ Model.

Cancer microenvironment : official journal of the International Cancer Microenvironment Society

Joshua S McLane, Lee A Ligon

Affiliations

  1. Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-5320, USA.
  2. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA.
  3. Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA.
  4. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA. [email protected].
  5. Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA. [email protected].

PMID: 27654881 PMCID: PMC5264661 DOI: 10.1007/s12307-016-0188-z

Abstract

Several changes have been described in the stroma surrounding a tumor, including changes in cellular composition, altered extracellular matrix composition and organization, and increases in stiffness. Tumor cells are influenced by the composition, organization, and mechanical properties of the microenvironment, and by signals from stromal cells. Here we sought to test whether signaling from stromal fibroblasts and/or the small change in stiffness observed in vivo surrounding epithelial tumors regulates tumor cell invasion from a model of a tumor in situ. We generated a novel tumor in situ model system in which a tumor spheroid is encased within a collagen-IV containing membrane and further encased within a collagen-I matrix of in vivo stiffness with or without fibroblasts. Effects of the matrix, fibroblasts or fibroblast signals were determined by observing the invasion of tumor cells into the matrix. Effects of reciprocal tumor cell signaling upon fibroblasts were determined by observing markers of fibroblast activation. We found that a stiffened matrix led to increased dissemination of MDA-MB-231 cells from tumor spheroids when no fibroblasts were present and that MCF10A cells maintained a more normal organization with a stiffened matrix. The presence of fibroblasts, or fibroblast conditioned media, attenuated the effect upon MDA-MB-231 cells. We also observed an attenuation of fibroblast activation associated gene expression in the presence of MDA-MB-231 cells, with a paradoxical increase in activation associated contractile activity. Furthermore, we identified osteoprotegerin as a soluble factor released by fibroblasts in the stiffened environment that is key to the inhibition of cell invasion.

Keywords: 3D hydrogel; Extracellular matrix; Invasion; Mechanotransduction; Tumor in situ

Conflict of interest statement

Compliance with Ethical Standards Competing Interests The authors declare no competing interests.

References

  1. Am J Cancer Res. 2011;1(4):482-97 - PubMed
  2. Oncol Lett. 2012 Feb;3(2):395-400 - PubMed
  3. Cancer Res. 2011 Aug 1;71(15):5296-306 - PubMed
  4. Carcinogenesis. 2002 May;23 (5):769-76 - PubMed
  5. Biochim Biophys Acta. 2009 May;1793(5):893-902 - PubMed
  6. Nat Mater. 2014 Oct;13(10):970-8 - PubMed
  7. Biol Proced Online. 2005;7:144-61 - PubMed
  8. Cancer Res. 1999 Oct 1;59(19):5002-11 - PubMed
  9. Biochem Biophys Res Commun. 1997 May 8;234(1):137-42 - PubMed
  10. Annu Rev Biochem. 2009;78:929-58 - PubMed
  11. Biomaterials. 2012 Jun;33(16):4157-65 - PubMed
  12. Cancer Metastasis Rev. 2009 Jun;28(1-2):113-27 - PubMed
  13. Breast Cancer Res Treat. 1992;22(1):39-45 - PubMed
  14. Tissue Eng Part C Methods. 2008 Sep;14(3):261-71 - PubMed
  15. Biomaterials. 2010 May;31(13):3622-30 - PubMed
  16. Endocrinology. 1980 Dec;107(6):1767-70 - PubMed
  17. N Engl J Med. 2004 Apr 15;350(16):1655-64 - PubMed
  18. Biophys J. 2015 Jul 21;109(2):249-64 - PubMed
  19. BMC Vet Res. 2012 Mar 27;8:35 - PubMed
  20. Oncogene. 2002 Oct 24;21(49):7514-23 - PubMed
  21. J Cell Sci. 2009 Jan 15;122(Pt 2):159-63 - PubMed
  22. Cancer Res. 2004 May 1;64(9):3215-22 - PubMed
  23. Cancer Cell. 2014 Jun 16;25(6):735-47 - PubMed
  24. Nat Rev Cancer. 2006 May;6(5):392-401 - PubMed
  25. J Cell Biol. 2007 Jul 30;178(3):425-36 - PubMed
  26. Cancer Cell. 2010 Feb 17;17(2):135-47 - PubMed
  27. J Immunol. 2011 Aug 15;187(4):1797-806 - PubMed
  28. Proteomics. 2010 May;10(9):1886-90 - PubMed
  29. PLoS One. 2012;7(1):e30219 - PubMed
  30. Mol Cancer Res. 2011 Apr;9(4):377-89 - PubMed
  31. J Cell Sci. 2006 Oct 1;119(Pt 19):3901-3 - PubMed
  32. PLoS One. 2012;7(3):e33289 - PubMed
  33. Carcinogenesis. 2012 Dec;33(12):2507-19 - PubMed
  34. Biochim Biophys Acta. 2013 Jul;1832(7):1070-8 - PubMed
  35. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  36. J Clin Pathol. 2003 Apr;56(4):271-6 - PubMed
  37. Mol Cancer Ther. 2014 Dec;13(12):3152-62 - PubMed
  38. Nature. 2004 Nov 18;432(7015):332-7 - PubMed
  39. Cell. 2009 Nov 25;139(5):891-906 - PubMed
  40. J Cancer Res Clin Oncol. 1997;123(6):301-9 - PubMed
  41. Oncol Rep. 2011 Nov;26(5):1243-50 - PubMed
  42. Cancer Cell. 2005 Sep;8(3):241-54 - PubMed
  43. Int J Cancer. 1996 Sep 17;67(6):816-20 - PubMed
  44. Front Biosci (Landmark Ed). 2010 Jan 01;15:166-79 - PubMed
  45. Adv Drug Deliv Rev. 2003 Nov 28;55(12):1631-49 - PubMed
  46. PLoS One. 2010 Sep 23;5(9):e12905 - PubMed
  47. Biophys J. 2009 Oct 7;97(7):2051-60 - PubMed
  48. Adv Healthc Mater. 2013 Jun;2(6):790-4 - PubMed
  49. Cytokine. 2012 Aug;59(2):423-32 - PubMed
  50. Cancer Microenviron. 2012 Apr;5(1):29-38 - PubMed
  51. Mol Cancer Res. 2011 Dec;9(12 ):1658-67 - PubMed
  52. J Exp Clin Cancer Res. 2013 Aug 13;32(1):51 - PubMed
  53. Cell Cycle. 2006 Aug;5(15):1597-601 - PubMed
  54. J Cell Sci. 2010 Oct 15;123(Pt 20):3507-14 - PubMed
  55. Cell. 2005 May 6;121(3):335-48 - PubMed
  56. Oncogene. 2014 Mar 6;33(10):1265-73 - PubMed
  57. J Biol Chem. 2014 Oct 24;289(43):30082-9 - PubMed

Publication Types