Display options
Share it on

Biol Open. 2016 Dec 15;5(12):1776-1783. doi: 10.1242/bio.021501.

New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42.

Biology open

Ben Fan, Yu-Long Li, Aruljothi Mariappan, Anke Becker, Xiao-Qin Wu, Rainer Borriss

Affiliations

  1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
  2. Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany.
  3. LOEWE Center for Synthetic Microbiology, Marburg an der Lahn, Philipps-Universität Marburg, Marburg 35037, Germany.
  4. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China [email protected] [email protected].
  5. Institut für Biologie/Bakteriengenetik, Humboldt Universität zu Berlin, Chausseestrasse 117, Berlin D-10115, Germany [email protected] [email protected].
  6. Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, Berlin 14195, Germany.

PMID: 27797724 PMCID: PMC5200910 DOI: 10.1242/bio.021501

Abstract

The alternative sigma factor D is known to be involved in at least three biological processes in Bacilli: flagellin synthesis, methyl-accepting chemotaxis and autolysin synthesis. Although many Bacillus genes have been identified as SigD regulon, the list may be not be complete. With microarray-based systemic screening, we found a set of genes downregulated in the sigD knockout mutant of the plant growth-promoting rhizobacterium B. amyloliquefaciens subsp. plantarum FZB42. Eight genes (appA, blsA, dhaS, spoVG, yqgA, RBAM_004640, RBAM_018080 and ytk) were further confirmed by quantitative PCR and/or northern blot to be controlled by SigD at the transcriptional level. These genes are hitherto not reported to be controlled by SigD. Among them, four genes are of unknown function and two genes (RBAM_004640 and RBAM_018080), absent in the model strain B. subtilis 168, are unique to B. amyloliquefaciens stains. The eight genes are involved in sporulation, biofilm formation, metabolite transport and several other functions. These findings extend our knowledge of the regulatory network governed by SigD in Bacillus and will further help to decipher the roles of the genes.

© 2016. Published by The Company of Biologists Ltd.

Keywords: Bacillus amyloliquefaciens; FZB42; Microarray; Non-isotopic northern blot; SigD; Sigma factor; Soil extract

Conflict of interest statement

The authors declare no competing or financial interests.

References

  1. J Bacteriol. 1990 Jun;172(6):3435-43 - PubMed
  2. J Microbiol. 2012 Feb;50(1):38-44 - PubMed
  3. J Nat Prod. 2007 Sep;70(9):1417-23 - PubMed
  4. Mol Microbiol. 2006 Feb;59(4):1216-28 - PubMed
  5. Nucleic Acids Res. 2012 Jan;40(Database issue):D1278-87 - PubMed
  6. J Mol Microbiol Biotechnol. 2009;16(1-2):14-24 - PubMed
  7. Microbiology. 2004 Mar;150(Pt 3):591-9 - PubMed
  8. J Bacteriol. 1993 Feb;175(3):795-801 - PubMed
  9. J Bacteriol. 2000 Jun;182(11):3055-62 - PubMed
  10. FEMS Microbiol Lett. 2003 Mar 14;220(1):155-60 - PubMed
  11. PLoS One. 2015 Nov 05;10(11):e0142002 - PubMed
  12. FEMS Microbiol Lett. 2005 Dec 15;253(2):221-9 - PubMed
  13. Nucleic Acids Res. 2008 Jan;36(Database issue):D93-6 - PubMed
  14. Nucleic Acids Res. 2009 Jan;37(Database issue):D459-63 - PubMed
  15. J Bacteriol. 1999 Jun;181(11):3392-401 - PubMed
  16. J Biotechnol. 2009 Mar 10;140(1-2):38-44 - PubMed
  17. Eur J Biochem. 1996 Dec 15;242(3):648-56 - PubMed
  18. Appl Microbiol Biotechnol. 2013 Dec;97(23):10081-90 - PubMed
  19. Mol Microbiol. 1994 Aug;13(3):417-26 - PubMed
  20. Biotechnol Lett. 2015 Mar;37(3):717-24 - PubMed
  21. J Bacteriol. 2011 Jan;193(1):215-24 - PubMed
  22. Cell. 1977 Aug;11(4):751-61 - PubMed
  23. Microbiology. 2014 Feb;160(Pt 2):243-60 - PubMed
  24. J Bacteriol. 2014 May;196(10):1842-52 - PubMed
  25. Int J Syst Evol Microbiol. 2011 Aug;61(Pt 8):1786-801 - PubMed
  26. Microb Cell Fact. 2015 Sep 04;14:130 - PubMed
  27. J Bacteriol. 1988 Apr;170(4):1560-7 - PubMed
  28. Nature. 1951 Jul 21;168(4264):115-6 - PubMed
  29. Nat Biotechnol. 2007 Sep;25(9):1007-14 - PubMed
  30. BMC Bioinformatics. 2009 Feb 06;10:50 - PubMed
  31. Nucleic Acids Res. 2001 May 1;29(9):e45 - PubMed
  32. J Bacteriol. 1989 Jun;171(6):3095-101 - PubMed
  33. Nature. 2010 Mar 11;464(7286):250-5 - PubMed
  34. J Bacteriol. 2009 Jan;191(1):100-8 - PubMed
  35. Gene. 2004 Mar 31;329:125-36 - PubMed
  36. Biosci Biotechnol Biochem. 2014;78(8):1428-34 - PubMed
  37. Mol Microbiol. 1991 Dec;5(12):2875-82 - PubMed
  38. BMC Microbiol. 2012 Jun 21;12:116 - PubMed
  39. Biotechnol Annu Rev. 2008;14:29-61 - PubMed
  40. Nucleic Acids Res. 2001 Sep 15;29(18):3804-13 - PubMed
  41. Genome Res. 2011 Apr;21(4):634-41 - PubMed
  42. Sci Rep. 2015 Aug 13;5:12975 - PubMed
  43. J Bacteriol. 1987 May;169(5):2223-30 - PubMed
  44. Nucleic Acids Res. 2002 May 1;30(9):e36 - PubMed
  45. J Bacteriol. 1992 Dec;174(24):7954-62 - PubMed
  46. Appl Environ Microbiol. 2007 Nov;73(21):6953-64 - PubMed
  47. Mol Plant Microbe Interact. 2007 Jun;20(6):619-26 - PubMed
  48. J Bacteriol. 2011 Sep;193(18):4821-31 - PubMed
  49. Annu Rev Biochem. 2014;83:753-77 - PubMed
  50. Mol Gen Genet. 1991 Mar;225(3):347-54 - PubMed

Publication Types