Display options
Share it on

Front Physiol. 2016 Sep 07;7:392. doi: 10.3389/fphys.2016.00392. eCollection 2016.

Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns.

Frontiers in physiology

Matthias Chiquet, Susan Blumer, Manuela Angelini, Thimios A Mitsiadis, Christos Katsaros

Affiliations

  1. Department of Orthodontics and Dentofacial Orthopedics, Medical Faculty, School of Dental Medicine, University of Bern Bern, Switzerland.
  2. Orofacial Development and Regeneration, Center for Dental Medicine, Institute for Oral Biology, University of Zurich Zurich, Switzerland.

PMID: 27656150 PMCID: PMC5013070 DOI: 10.3389/fphys.2016.00392

Abstract

During formation of the secondary palate in mammalian embryos, two vertically oriented palatal shelves rapidly elevate into a horizontal position above the tongue, meet at the midline, and fuse to form a single entity. Previous observations suggested that elevation occurs by a simple 90° rotation of the palatal shelves. More recent findings showed that the presumptive midline epithelial cells are not located at the tips of palatal shelves before elevation, but mostly toward their medial/lingual part. This implied extensive tissue remodeling during shelf elevation. Nevertheless, it is still not known how the shelf mesenchyme reorganizes during this process, and what mechanism drives it. To address this question, we mapped the distinct and restricted expression domains of certain extracellular matrix components within the developing palatal shelves. This procedure allowed to monitor movements of entire mesenchymal regions relative to each other during shelf elevation. Consistent with previous notions, our results confirm a flipping movement of the palatal shelves anteriorly, whereas extensive mesenchymal reorganization is observed more posteriorly. There, the entire lingual portion of the vertical shelves moves close to the midline after elevation, whereas the mesenchyme at the original tip of the shelves ends up ventrolaterally. Moreover, we observed that the mesenchymal cells of elevating palatal shelves substantially align their actin cytoskeleton, their extracellular matrix, and their nuclei in a ventral to medial direction. This indicates that, like in other morphogenetic processes, actin-dependent cell contractility is a major driving force for mesenchymal tissue remodeling during palatogenesis.

Keywords: actin; extracellular matrix; mouse embryo; palatal shelf elevation; palate morphogenesis; tissue remodeling

References

  1. J Cell Biol. 1988 Dec;107(6 Pt 1):2341-9 - PubMed
  2. Matrix Biol. 2014 Jul;37:1-14 - PubMed
  3. J Embryol Exp Morphol. 1986 Jul;96:111-30 - PubMed
  4. Cell Tissue Res. 2016 Sep;365(3):453-65 - PubMed
  5. J Cell Biol. 1995 Aug;130(4):1005-14 - PubMed
  6. Development. 1987 Aug;100(4):629-35 - PubMed
  7. Nat Genet. 1995 Dec;11(4):415-21 - PubMed
  8. Curr Top Dev Biol. 2008;84:37-138 - PubMed
  9. Dev Biol. 2015 May 1;401(1):152-64 - PubMed
  10. J Embryol Exp Morphol. 1979 Dec;54:229-40 - PubMed
  11. J Biol Chem. 2006 Aug 11;281(32):22855-64 - PubMed
  12. PLoS One. 2012;7(10):e47762 - PubMed
  13. Dev Biol. 2007 Jan 15;301(2):309-26 - PubMed
  14. Anat Rec. 1965 Feb;151:107-17 - PubMed
  15. Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978 - PubMed
  16. Dev Dyn. 2010 Jul;239(7):2110-7 - PubMed
  17. Int J Biochem Cell Biol. 2010 Sep;42(9):1412-5 - PubMed
  18. Teratology. 1974 Feb;9(1):113-25 - PubMed
  19. J Cell Sci. 2004 Feb 1;117(Pt 4):571-81 - PubMed
  20. Birth Defects Res A Clin Mol Teratol. 2007 Oct;79(10):688-95 - PubMed
  21. Methods. 2001 May;24(1):15-27 - PubMed
  22. Dev Dyn. 2014 Dec;243(12 ):1536-43 - PubMed
  23. Nat Rev Genet. 2011 Mar;12(3):167-78 - PubMed
  24. Microsc Res Tech. 1999 Oct 1;47(1):3-17 - PubMed
  25. J Cell Sci. 2000 Oct;113 ( Pt 20):3583-91 - PubMed
  26. J Histochem Cytochem. 2012 Jan;60(1):57-68 - PubMed
  27. Lancet. 2009 Nov 21;374(9703):1773-85 - PubMed
  28. J Pathol. 2003 Jul;200(4):488-99 - PubMed
  29. J Cell Biol. 2013 Jan 7;200(1):9-19 - PubMed
  30. Biochem J. 1996 Apr 15;315 ( Pt 2):549-54 - PubMed
  31. J Dent Res. 2004 Oct;83(10):797-801 - PubMed
  32. Development. 2012 Jan;139(2):231-43 - PubMed
  33. J Anat. 1984 Mar;138 ( Pt 2):251-8 - PubMed
  34. Exp Cell Res. 2008 Aug 1;314(13):2477-87 - PubMed
  35. Dev Dyn. 2011 Jul;240(7):1737-44 - PubMed
  36. Nat Genet. 1995 Dec;11(4):409-14 - PubMed
  37. Int J Biochem Cell Biol. 2010 Oct;42(10):1717-28 - PubMed
  38. Oral Dis. 2009 Oct;15(7):437-53 - PubMed
  39. Development. 1988;103 Suppl:41-60 - PubMed
  40. Anat Embryol (Berl). 2004 Apr;208(1):19-25 - PubMed
  41. Nat Rev Mol Cell Biol. 2009 Jan;10(1):34-43 - PubMed
  42. Mol Biol Cell. 2002 Oct;13(10):3601-13 - PubMed
  43. PLoS One. 2009;4(4):e5385 - PubMed
  44. Biochem J. 2003 Aug 1;373(Pt 3):805-14 - PubMed
  45. J Dent Res. 2016 Apr;95(4):453-9 - PubMed
  46. J Embryol Exp Morphol. 1982 Jun;69:193-213 - PubMed
  47. Front Physiol. 2013 Jan 07;3:488 - PubMed

Publication Types