Display options
Share it on

Front Microbiol. 2016 Sep 07;7:1420. doi: 10.3389/fmicb.2016.01420. eCollection 2016.

Longitudinal Comparison of Antibiotic Resistance in Diarrheagenic and Non-pathogenic Escherichia coli from Young Tanzanian Children.

Frontiers in microbiology

Jessica C Seidman, Lashaunda B Johnson, Joshua Levens, Harran Mkocha, Beatriz Muñoz, Ellen K Silbergeld, Sheila K West, Christian L Coles

Affiliations

  1. Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD USA.
  2. Biology Department, Morgan State University, Baltimore, MD USA.
  3. CTS Global, Dar es Salaam Tanzania.
  4. Kongwa Trachoma Project, Kongwa Tanzania.
  5. Dana Center for Preventive Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD USA.
  6. Department of Environmental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA.
  7. Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA.

PMID: 27656179 PMCID: PMC5013055 DOI: 10.3389/fmicb.2016.01420

Abstract

Enteroaggregative, enteropathogenic, and enterotoxigenic Escherichia coli contribute significantly to the burden of diarrheal infections particularly in developing countries. Antibiotic resistance is increasingly common among bacterial pathogens including pathogenic E. coli. We assessed the relationship between pathogenic E. coli carriage and resistance to six antibiotics in E. coli isolated from young children in rural Tanzania. We surveyed temporal stability in antibiotic resistance in 2492 E. coli isolated from fecal samples obtained from young children in rural Tanzania collected over a 6 months period. Approximately half of the 377 children sampled were exposed to an azithromycin mass treatment program for trachoma control and half resided in control villages. Children were sampled at baseline, 1-, 3-, and 6 months following azithromycin treatment. We compared resistance to six antibiotics in pathogenic and non-pathogenic strains at the population level, within fecal specimens, and within individuals over time using chi-square tests, paired odds ratios, and logistic regression, respectively. Resistance to ampicillin and trimethoprim/sulfamethoxazole was highly prevalent (>65%). Resistance to 5 of 6 antibiotics tested and multi-drug resistance occurred more frequently in pathogenic isolates (p ≤ 0.001) within fecal specimens and overall. Azithromycin mass treatment exposure was significantly associated with increased odds of carriage of isolates resistant to erythromycin (OR 3.64, p < 0.001) and trimethoprim/sulfamethoxazole (OR 1.60, p < 0.05). Pathogenic isolates were approximately twice as likely to be resistant to erythromycin, ampicillin, or trimethoprim/sulfamethoxazole compared to non-pathogenic isolates from the same fecal specimen. The potential linkage between resistance and virulence in E. coli suggests hygiene and sanitation interventions aimed at reducing disease burden could play a role in controlling transmission of antibiotic resistance.

Keywords: Tanzania; antibiotic resistance; children; diarrheagenic E. coli; non-pathogenic E. coli

References

  1. J Antimicrob Chemother. 2004 Nov;54(5):952-5 - PubMed
  2. Diagn Microbiol Infect Dis. 2007 Nov;59(3):351-4 - PubMed
  3. Appl Environ Microbiol. 2005 Nov;71(11):6753-61 - PubMed
  4. Antimicrob Agents Chemother. 2011 Mar;55(3):1135-41 - PubMed
  5. BMC Pediatr. 2011 Feb 23;11:19 - PubMed
  6. J Clin Microbiol. 1995 Mar;33(3):701-5 - PubMed
  7. Pediatr Infect Dis J. 2006 Jun;25(6):513-20 - PubMed
  8. Int J Epidemiol. 2014 Aug;43(4):1105-13 - PubMed
  9. J Antimicrob Chemother. 2008 Jun;61(6):1315-8 - PubMed
  10. Mol Cell Probes. 1994 Aug;8(4):285-90 - PubMed
  11. J Antimicrob Chemother. 2008 Oct;62(4):703-8 - PubMed
  12. J Clin Epidemiol. 2007 Nov;60(11):1149-55 - PubMed
  13. J Clin Microbiol. 2005 Feb;43(2):755-60 - PubMed
  14. Lancet. 2013 Jul 20;382(9888):209-22 - PubMed
  15. Infect Immun. 2000 Jan;68(1):64-71 - PubMed
  16. Am J Clin Pathol. 1966 Apr;45(4):493-6 - PubMed
  17. Infect Immun. 2008 Jul;76(7):3281-92 - PubMed
  18. J Acquir Immune Defic Syndr. 2008 Apr 15;47(5):585-91 - PubMed
  19. Foodborne Pathog Dis. 2012 Nov;9(11):992-1001 - PubMed
  20. Clin Microbiol Rev. 2013 Oct;26(4):744-58 - PubMed
  21. Diagn Microbiol Infect Dis. 2012 Jun;73(2):121-8 - PubMed
  22. Epidemiol Infect. 2005 Aug;133(4):627-33 - PubMed
  23. Clin Infect Dis. 2009 May 15;48(10):1375-81 - PubMed
  24. Antimicrob Agents Chemother. 1999 Dec;43(12):3022-4 - PubMed
  25. Pediatr Infect Dis J. 2012 Apr;31(4):341-6 - PubMed
  26. Pharmacoepidemiol Drug Saf. 2004 May;13(5):303-8 - PubMed
  27. Clin Infect Dis. 2013 Jun;56(11):1519-26 - PubMed
  28. Antimicrob Agents Chemother. 1996 Jul;40(7):1699-702 - PubMed
  29. Am J Trop Med Hyg. 2011 Oct;85(4):691-6 - PubMed
  30. PLoS One. 2014 Jan 02;9(1):e84939 - PubMed
  31. Am J Trop Med Hyg. 2002 May;66(5):590-3 - PubMed
  32. JAMA Pediatr. 2016 Mar;170(3):267-87 - PubMed
  33. Lancet Glob Health. 2015 Sep;3(9):e564-75 - PubMed
  34. J Clin Microbiol. 2000 Dec;38(12):4459-62 - PubMed
  35. BMC Microbiol. 2011 Feb 27;11:44 - PubMed
  36. BMC Public Health. 2012 Mar 21;12:220 - PubMed
  37. Am J Trop Med Hyg. 2004 May;70(5):536-9 - PubMed
  38. Clin Infect Dis. 1997 Mar;24(3):356-62 - PubMed
  39. J Microbiol. 2011 Feb;49(1):46-52 - PubMed
  40. BMC Infect Dis. 2007 Aug 09;7:92 - PubMed
  41. Clin Infect Dis. 2009 Aug 1;49(3):365-71 - PubMed
  42. Eur J Clin Microbiol Infect Dis. 2012 Sep;31(9):2413-20 - PubMed
  43. Clin Infect Dis. 2002 Aug 15;35(4):395-402 - PubMed
  44. Clin Infect Dis. 2010 Sep 1;51(5):571-4 - PubMed
  45. Clin Microbiol Infect. 2008 Jan;14(1):41-8 - PubMed
  46. Emerg Infect Dis. 2007 Nov;13(11):1640-6 - PubMed

Publication Types