Display options
Share it on

Sci Rep. 2016 Oct 11;6:35034. doi: 10.1038/srep35034.

Effect of adding nanometre-sized heterogeneities on the structural dynamics and the excess wing of a molecular glass former.

Scientific reports

S Gupta, J K H Fischer, P Lunkenheimer, A Loidl, E Novak, N Jalarvo, M Ohl

Affiliations

  1. Juelich Centre for Neutron science (JCNS) outstation at SNS, POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.
  2. Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, TN 37831, Oak Ridge, USA.
  3. Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, LA 70803, USA.
  4. Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany.
  5. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA.
  6. Chemical and Engineering Materials Division, Oak Ridge National Laboratory (ORNL), PO BOX 2008 MS6473, TN 37831, Oak Ridge, USA.

PMID: 27725747 PMCID: PMC5057163 DOI: 10.1038/srep35034

Abstract

We present the relaxation dynamics of glass-forming glycerol mixed with 1.1 nm sized polyhedral oligomeric silsesquioxane (POSS) molecules using dielectric spectroscopy (DS) and two different neutron scattering (NS) techniques. Both, the reorientational dynamics as measured by DS and the density fluctuations detected by NS reveal a broadening of the α relaxation when POSS molecules are added. Moreover, we find a significant slowing down of the α-relaxation time. These effects are in accord with the heterogeneity scenario considered for the dynamics of glasses and supercooled liquids. The addition of POSS also affects the excess wing in glycerol arising from a secondary relaxation process, which seems to exhibit a dramatic increase in relative strength compared to the α relaxation.

References

  1. Phys Rev Lett. 2014 Sep 12;113(11):117801 - PubMed
  2. Annu Rev Phys Chem. 2000;51:99-128 - PubMed
  3. Chem Rev. 2010 Apr 14;110(4):2081-173 - PubMed
  4. Eur Phys J E Soft Matter. 2015 Jan;38(1):1 - PubMed
  5. Phys Rev Lett. 2015 Sep 18;115(12):128302 - PubMed
  6. Phys Rev Lett. 2007 Sep 28;99(13):135502 - PubMed
  7. Rev Sci Instrum. 2011 Aug;82(8):085109 - PubMed
  8. J Phys Chem B. 2011 Dec 8;115(48):13994-9 - PubMed
  9. Phys Chem Chem Phys. 2016 Feb 7;18(5):3975-81 - PubMed
  10. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):6924-36 - PubMed
  11. J Chem Phys. 2013 May 21;138(19):196101 - PubMed
  12. Phys Rev Lett. 2000 Jun 12;84(24):5560-3 - PubMed
  13. Phys Chem Chem Phys. 2011 Feb 7;13(5):1786-99 - PubMed
  14. Phys Rev Lett. 2004 Mar 12;92(10):105701 - PubMed
  15. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):1099-102; author reply 1103-5 - PubMed
  16. Phys Rev Lett. 1990 Aug 27;65(9):1108-1111 - PubMed
  17. Phys Chem Chem Phys. 2013 Jul 14;15(26):10732-9 - PubMed
  18. Phys Rev Lett. 2002 Jul 8;89(2):025704 - PubMed
  19. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Oct;54(4):3853-3869 - PubMed
  20. Science. 1995 Mar 31;267(5206):1935-9 - PubMed
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062320 - PubMed
  22. Eur Phys J E Soft Matter. 2016 Mar;39(3):40 - PubMed
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031506 - PubMed
  24. Phys Rev Lett. 2002 Mar 4;88(9):095701 - PubMed
  25. J Chem Phys. 2012 Sep 14;137(10):104502 - PubMed
  26. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4026-4034 - PubMed
  27. Science. 2000 Jan 14;287(5451):290-3 - PubMed

Publication Types