Display options
Share it on

Sci Rep. 2016 Nov 11;6:36936. doi: 10.1038/srep36936.

Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry.

Scientific reports

Weiwei Kan, Bin Liang, Ruiqi Li, Xue Jiang, Xin-Ye Zou, Lei-Lei Yin, Jianchun Cheng

Affiliations

  1. Collaborative Innovation Center of Advanced Microstructures and Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093, P. R. China.
  2. School of Sciences, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
  3. Imaging Technology Group, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

PMID: 27833141 PMCID: PMC5105145 DOI: 10.1038/srep36936

Abstract

Acoustic illusion cloaks that create illusion effects by changing the scattered wave have many potential applications in a variety of scenarios. However, the experimental realization of generating three-dimensional (3D) acoustic illusions under detection of broadband signals still remains challenging despite the paramount importance for practical applications. Here we report the design and experimental demonstration of a 3D broadband cloak that can effectively manipulate the scattered field to generate the desired illusion effect near curved boundaries. The designed cloak simply comprises positive-index anisotropic materials, with parameters completely independent of either the cloaked object or the boundary. With the ability of manipulating the scattered field in 3D space and flexibility of applying to arbitrary geometries, our method may take a major step toward the real world application of acoustic cloaks and offer the possibilities of building advanced acoustic devices with versatile functionalities.

References

  1. Nat Mater. 2006 Jun;5(6):452-6 - PubMed
  2. Nature. 2011 Mar 17;471(7338):292-3 - PubMed
  3. Phys Rev Lett. 2008 Jan 18;100(2):024301 - PubMed
  4. Science. 2006 Nov 10;314(5801):977-80 - PubMed
  5. Nat Mater. 2014 Apr;13(4):352-5 - PubMed
  6. Phys Rev Lett. 2012 Mar 23;108(12):124301 - PubMed
  7. Sci Rep. 2013;3:1427 - PubMed
  8. Nat Commun. 2011 Feb 01;2:176 - PubMed
  9. Nat Mater. 2009 Dec;8(12):931-4 - PubMed
  10. Phys Rev Lett. 2009 Mar 6;102(9):093901 - PubMed
  11. Phys Rev Lett. 2011 Jan 7;106(1):014301 - PubMed
  12. Science. 2006 Jun 23;312(5781):1780-2 - PubMed
  13. Nat Mater. 2009 Jul;8(7):568-71 - PubMed
  14. Phys Rev Lett. 2013 Mar 22;110(12):124301 - PubMed
  15. Nano Lett. 2011 Jul 13;11(7):2825-8 - PubMed
  16. Phys Rev Lett. 2012 Mar 16;108(11):114301 - PubMed
  17. Phys Rev Lett. 2011 Jan 21;106(3):033901 - PubMed
  18. Phys Rev Lett. 2011 Jan 14;106(2):024301 - PubMed
  19. Phys Rev Lett. 2011 Jun 24;106(25):253901 - PubMed
  20. Nat Mater. 2013 Jan;12(1):25-8 - PubMed

Publication Types