Display options
Share it on

Front Mol Neurosci. 2016 Oct 27;9:107. doi: 10.3389/fnmol.2016.00107. eCollection 2016.

Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells.

Frontiers in molecular neuroscience

Francesca Angeletti, Gianluca Fossati, Alessandra Pattarozzi, Roberto Würth, Agnese Solari, Antonio Daga, Irene Masiello, Federica Barbieri, Tullio Florio, Sergio Comincini

Affiliations

  1. Department of Biology and Biotechnology, University of Pavia Pavia, Italy.
  2. Preclinical Research Department Italfarmaco Research Center, Italfarmaco S.p.A Cinisello Balsamo, Italy.
  3. Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genova Genova, Italy.
  4. Regenerative Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST Genova, Italy.

PMID: 27833530 PMCID: PMC5081386 DOI: 10.3389/fnmol.2016.00107

Abstract

Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene

Keywords: autophagy; cancer stem cell; glioblastoma multiforme; histone deacetylase inhibitor; programmed cell death

References

  1. Cell Mol Life Sci. 2014 Oct;71(20):3885-901 - PubMed
  2. J Cell Physiol. 2014 Nov;229(11):1776-86 - PubMed
  3. Annu Rev Nutr. 2007;27:19-40 - PubMed
  4. Nature. 2012 Aug 23;488(7412):522-6 - PubMed
  5. Cancer Res. 2012 May 1;72(9):2251-61 - PubMed
  6. Mol Med. 2005 Jan-Dec;11(1-12):1-15 - PubMed
  7. Autophagy. 2010 Nov;6(8):1057-65 - PubMed
  8. J Cell Physiol. 2013 Jan;228(1):1-8 - PubMed
  9. Cell Cycle. 2015 ;14 (21):3418-29 - PubMed
  10. Curr Cancer Drug Targets. 2010 Mar;10(2):176-91 - PubMed
  11. Nat Rev Cancer. 2006 Jun;6(6):425-36 - PubMed
  12. Science. 2010 Dec 3;330(6009):1344-8 - PubMed
  13. Eur J Histochem. 2012 Oct 11;56(4):e44 - PubMed
  14. Mol Neurobiol. 2016 Jan;53(1):57-72 - PubMed
  15. Science. 2014 Jun 20;344(6190):1396-401 - PubMed
  16. Toxicology. 2013 Dec 15;314(2-3):209-20 - PubMed
  17. World J Gastroenterol. 2014 May 7;20(17 ):4953-62 - PubMed
  18. Cell. 2013 Oct 10;155(2):462-77 - PubMed
  19. Curr Opin Genet Dev. 2004 Feb;14(1):43-7 - PubMed
  20. Adv Enzyme Regul. 1984;22:27-55 - PubMed
  21. Mol Cancer. 2014 Oct 09;13:230 - PubMed
  22. Mol Cancer Ther. 2012 Apr;11(4):973-83 - PubMed
  23. Cell Cycle. 2013 Jan 1;12 (1):145-56 - PubMed
  24. Cancer Res. 2011 Jun 15;71(12):4055-60 - PubMed
  25. Clin Cancer Res. 2015 Nov 15;21(22):5037-46 - PubMed
  26. J Clin Invest. 2015 Jan;125(1):42-6 - PubMed
  27. Recent Pat Anticancer Drug Discov. 2015;10(2):145-62 - PubMed
  28. J Biol Chem. 2004 Jul 9;279(28):29004-12 - PubMed
  29. Biomed Res Int. 2014;2014:126586 - PubMed
  30. Hepatology. 2006 Mar;43(3):425-34 - PubMed
  31. Cancer Cell. 2006 May;9(5):391-403 - PubMed
  32. Future Oncol. 2011 Feb;7(2):263-83 - PubMed
  33. Mol Neurobiol. 2016 Aug 11;:null - PubMed
  34. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4389-94 - PubMed
  35. Cell Cycle. 2013 Feb 1;12(3):491-500 - PubMed
  36. Autophagy. 2016;12 (1):1-222 - PubMed
  37. Cytotherapy. 2006;8(4):315-7 - PubMed
  38. J Biol Regul Homeost Agents. 2013 Jan-Mar;27(1):143-54 - PubMed
  39. Clin Cancer Res. 2013 Feb 15;19(4):764-72 - PubMed
  40. Oncotarget. 2014 Nov 30;5(22):11252-68 - PubMed
  41. Cell Struct Funct. 1998 Feb;23(1):33-42 - PubMed
  42. Anticancer Res. 2015 Feb;35(2):615-25 - PubMed
  43. Semin Cancer Biol. 2013 Oct;23(5):344-51 - PubMed
  44. Nature. 2004 Nov 18;432(7015):396-401 - PubMed
  45. Autophagy. 2011 Feb;7(2):176-87 - PubMed
  46. Drug Discov Today. 2012 Oct;17(19-20):1103-10 - PubMed
  47. J Biol Chem. 2009 Mar 13;284(11):7138-48 - PubMed
  48. Mol Pharmacol. 2008 Jan;73(1):191-202 - PubMed
  49. N Engl J Med. 2013 Feb 14;368(7):651-62 - PubMed
  50. Nature. 2011 Mar 3;471(7336):74-9 - PubMed
  51. Cancer Res. 2010 Jan 15;70(2):440-6 - PubMed
  52. JAMA. 2013 Nov 6;310(17):1842-50 - PubMed
  53. Cell Death Dis. 2013 Feb 28;4:e519 - PubMed
  54. Cell Cycle. 2012 Jan 1;11(1):194-9 - PubMed
  55. J Biol Chem. 2008 Apr 18;283(16):10958-66 - PubMed
  56. EMBO J. 2015 Apr 1;34(7):856-80 - PubMed
  57. Oncotarget. 2016 Jun 21;7(25):38638-38657 - PubMed
  58. Cancer Cell. 2015 Oct 12;28(4):456-71 - PubMed
  59. Leukemia. 2007 Sep;21(9):1892-900 - PubMed
  60. Autophagy. 2008 Jan;4(1):82-4 - PubMed
  61. Anticancer Res. 2010 Nov;30(11):4525-35 - PubMed
  62. J Hepatol. 2005 Feb;42(2):210-7 - PubMed
  63. Cell. 2009 Jun 12;137(6):1062-75 - PubMed
  64. Ann Neurosci. 2014 Apr;21(2):62-3 - PubMed
  65. N Engl J Med. 2005 Mar 10;352(10 ):987-96 - PubMed
  66. Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3697-702 - PubMed

Publication Types