Display options
Share it on

Front Physiol. 2016 Oct 26;7:473. doi: 10.3389/fphys.2016.00473. eCollection 2016.

Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling.

Frontiers in physiology

Lorenzo R Sewanan, Jeffrey R Moore, William Lehman, Stuart G Campbell

Affiliations

  1. Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA; Yale School of Medicine, Yale UniversityNew Haven, CT, USA.
  2. Department of Biological Sciences, University of Massachusetts Lowell Lowell, MA, USA.
  3. Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA.
  4. Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of MedicineNew Haven, CT, USA.

PMID: 27833562 PMCID: PMC5081029 DOI: 10.3389/fphys.2016.00473

Abstract

Point mutations to the human gene TPM1 have been implicated in the development of both hypertrophic and dilated cardiomyopathies. Such observations have led to studies investigating the link between single residue changes and the biophysical behavior of the tropomyosin molecule. However, the degree to which these molecular perturbations explain the performance of intact sarcomeres containing mutant tropomyosin remains uncertain. Here, we present a modeling approach that integrates various aspects of tropomyosin's molecular properties into a cohesive paradigm representing their impact on muscle function. In particular, we considered the effects of tropomyosin mutations on (1) persistence length, (2) equilibrium between thin filament blocked and closed regulatory states, and (3) the crossbridge duty cycle. After demonstrating the ability of the new model to capture Ca-dependent myofilament responses during both dynamic and steady-state activation, we used it to capture the effects of hypertrophic cardiomyopathy (HCM) related E180G and D175N mutations on skinned myofiber mechanics. Our analysis indicates that the fiber-level effects of the two mutations can be accurately described by a combination of changes to the three tropomyosin properties represented in the model. Subsequently, we used the model to predict mutation effects on muscle twitch. Both mutations led to increased twitch contractility as a consequence of diminished cooperative inhibition between thin filament regulatory units. Overall, simulations suggest that a common twitch phenotype for HCM-linked tropomyosin mutations includes both increased contractility and elevated diastolic tension.

Keywords: computational modeling; cooperativity; diastolic dysfunction; hypertrophic cardiomyopathy; tropomyosin; tropomyosin stiffness; tropomyosin-actin interactions

References

  1. Am J Physiol Heart Circ Physiol. 2000 Nov;279(5):H2414-23 - PubMed
  2. J Mol Biol. 1975 Oct 25;98(2):293-304 - PubMed
  3. J Struct Biol. 2010 May;170(2):313-8 - PubMed
  4. Proc Natl Acad Sci U S A. 1988 May;85(9):3265-9 - PubMed
  5. J Muscle Res Cell Motil. 2016 Oct;37(4-5):131-147 - PubMed
  6. Arch Biochem Biophys. 2014 Mar 1;545:63-8 - PubMed
  7. Biophys J. 2010 Aug 4;99(3):862-8 - PubMed
  8. Eur Biophys J. 2012 Dec;41(12):1015-32 - PubMed
  9. Biophys J. 2013 Aug 20;105(4):941-50 - PubMed
  10. J Mol Cell Cardiol. 2011 Mar;50(3):442-50 - PubMed
  11. Biophys J. 2010 May 19;98(10):2254-64 - PubMed
  12. Cell. 2016 May 19;165(5):1147-59 - PubMed
  13. J Biol Chem. 1994 Apr 8;269(14):10461-6 - PubMed
  14. Arch Biochem Biophys. 2014 Dec 15;564:89-99 - PubMed
  15. Circ Res. 1998 Jan 9-23;82(1):106-15 - PubMed
  16. Biophys J. 2003 May;84(5):3168-80 - PubMed
  17. J Muscle Res Cell Motil. 2007;28(1):49-58 - PubMed
  18. Protein Sci. 1994 Mar;3(3):402-10 - PubMed
  19. Cell. 1994 Jun 3;77(5):701-12 - PubMed
  20. Front Physiol. 2012 Apr 04;3:80 - PubMed
  21. Biophys J. 2011 Feb 16;100(4):1014-23 - PubMed
  22. Biophys J. 2003 May;84(5):3155-67 - PubMed
  23. Circ Res. 1999 Jul 9;85(1):47-56 - PubMed
  24. J Muscle Res Cell Motil. 2013 Aug;34(3-4):285-94 - PubMed
  25. Nat Med. 1999 Dec;5(12):1413-7 - PubMed
  26. FEBS Lett. 2012 Sep 21;586(19):3503-7 - PubMed
  27. J Physiol. 2001 Jan 15;530(Pt 2):263-72 - PubMed
  28. J Cell Biol. 2012 Oct 29;199(3):417-21 - PubMed
  29. Biochemistry. 2012 Dec 11;51(49):9880-90 - PubMed
  30. Am J Physiol. 1997 Apr;272(4 Pt 2):H1892-7 - PubMed
  31. J Muscle Res Cell Motil. 2013 Aug;34(3-4):295-310 - PubMed
  32. Circ Cardiovasc Genet. 2014 Apr;7(2):132-43 - PubMed
  33. PLoS Comput Biol. 2015 Aug 11;11(8):e1004376 - PubMed
  34. J Biomed Biotechnol. 2011;2011:435271 - PubMed
  35. Biochem Biophys Res Commun. 2012 Aug 3;424(3):493-6 - PubMed
  36. Biochim Biophys Acta. 2012 Feb;1824(2):366-73 - PubMed
  37. Biophys J. 1993 Aug;65(2):693-701 - PubMed
  38. Am J Physiol Heart Circ Physiol. 2002 Mar;282(3):H1055-62 - PubMed
  39. Arch Biochem Biophys. 2016 Mar 15;594:8-17 - PubMed
  40. J Struct Biol. 2006 Aug;155(2):273-84 - PubMed
  41. Biophys J. 2015 Nov 17;109 (10 ):2101-12 - PubMed
  42. J Mol Biol. 1997 Feb 14;266(1):8-14 - PubMed
  43. J Mol Cell Cardiol. 2011 Nov;51(5):812-20 - PubMed

Publication Types

Grant support