Display options
Share it on

Dyes Pigm. 2016 Dec;135:127-133. doi: 10.1016/j.dyepig.2016.05.007. Epub 2016 May 09.

Hydrophobic resorufamine derivatives: potent and selective red fluorescent probes of the endoplasmic reticulum of mammalian cells.

Dyes and pigments : an international journal

Sahishna Phaniraj, Zhe Gao, Digamber Rane, Blake R Peterson

Affiliations

  1. Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045.

PMID: 27765999 PMCID: PMC5066811 DOI: 10.1016/j.dyepig.2016.05.007

Abstract

The endoplasmic reticulum (ER) of eukaryotic cells plays critical roles in the processing of secreted and transmembrane proteins. Defects in these functions are associated with a wide range of pathologies. To image this organelle, cells are often treated with fluorescent ER-Tracker dyes. Although these compounds are selective, existing red fluorescent probes of the ER are costly glibenclamide derivatives that inhibit ER-associated sulphonylurea receptors. To provide simpler and more cost-effective red fluorescent probes of the ER, we synthesized amino analogues of the fluorophore resorufin. By varying the polarity of linked substituents, we identified hexyl resorufamine (HRA) as a novel hydrophobic (cLogD (pH 7.4) = 3.8) red fluorescent (Ex. 565 nm; Em. 614 nm in ethanol) molecular probe. HRA is exceptionally bright in organic solvents (quantum yield = 0.70), it exclusively localizes to the ER of living HeLa cells as imaged by confocal microscopy, it is effective at concentrations as low as 100 nM, and it is non-toxic under these conditions. To examine its utility, we used HRA to facilitate visualization of small molecule-mediated release of a GFP-GPI fusion protein from the ER into the secretory pathway. HRA represents a potent, selective, and cost-effective probe for imaging and labeling the ER.

References

  1. Biotech Histochem. 2003 Dec;78(6):323-32 - PubMed
  2. Nat Methods. 2012 Mar 11;9(5):493-8 - PubMed
  3. J Histochem Cytochem. 2007 Aug;55(8):795-804 - PubMed
  4. Nat Chem Biol. 2007 May;3(5):263-7 - PubMed
  5. Biochem Pharmacol. 1994 Aug 30;48(5):923-36 - PubMed
  6. Org Lett. 2007 Aug 2;9(16):3109-12 - PubMed
  7. Cell. 1984 Aug;38(1):101-8 - PubMed
  8. Histochem Cell Biol. 2013 May;139(5):623-37 - PubMed
  9. Traffic. 2015 Jan;16(1):1-18 - PubMed
  10. ACS Chem Biol. 2008 Mar 20;3(3):142-55 - PubMed
  11. BMC Biol. 2014 Nov 11;12 :94 - PubMed
  12. ACS Chem Biol. 2014 Apr 18;9(4):855-66 - PubMed
  13. J Fluoresc. 2004 Jul;14 (4):465-72 - PubMed
  14. Curr Opin Cell Biol. 2011 Apr;23(2):143-9 - PubMed
  15. Chem Commun (Camb). 2014 Oct 11;50(79):11672-5 - PubMed
  16. Org Lett. 2007 Sep 13;9(19):3741-4 - PubMed
  17. Nat Rev Drug Discov. 2008 Dec;7(12 ):1013-30 - PubMed
  18. Synthesis (Stuttg). 2014 Jan 1;46(2):158-164 - PubMed
  19. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 - PubMed
  20. J Biol Chem. 1987 Feb 25;262(6):2608-12 - PubMed
  21. Annu Rev Pathol. 2008;3:399-425 - PubMed
  22. Sci Rep. 2014 Oct 21;4:6701 - PubMed
  23. Clin Toxicol (Phila). 2010 Jun;48(5):407-14 - PubMed
  24. J Lipid Res. 1999 Dec;40(12):2264-70 - PubMed
  25. Biol Chem. 2014 Jan;395(1):1-13 - PubMed
  26. J Cell Sci. 2011 Jan 1;124(Pt 1):5-8 - PubMed
  27. Org Lett. 2006 Feb 16;8(4):581-4 - PubMed
  28. Eur J Biochem. 2000 Sep;267(17):5421-6 - PubMed
  29. J Microsc. 2000 Mar;197(Pt 3):239-49 - PubMed
  30. Angew Chem Int Ed Engl. 2015 Aug 10;54(33):9696-9 - PubMed
  31. Photochem Photobiol. 2002 Oct;76(4):385-90 - PubMed
  32. Anal Bioanal Chem. 2012 Oct;404(6-7):1919-23 - PubMed

Publication Types

Grant support