Display options
Share it on

Adv Biomed Res. 2016 Oct 26;5:170. doi: 10.4103/2277-9175.190942. eCollection 2016.

Chitosan-myristate nanogel as an artificial chaperone protects neuroserpin from misfolding.

Advanced biomedical research

Habib Nazem, Afshin Mohsenifar, Sahar Majdi

Affiliations

  1. Department of Biochemistry, Payam Noor University, Tehran, Iran.
  2. Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran.
  3. Young Researchers and Elite Club, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.

PMID: 27995109 PMCID: PMC5137230 DOI: 10.4103/2277-9175.190942

Abstract

BACKGROUND: Molecular chaperon-like activity for protein refolding was studied using nanogel chitosan-myristic acid (CMA) and the protein neuroserpin (NS), a member of the serine proteinase inhibitor superfamily (serpin).

MATERIALS AND METHODS: Recombinant his-tag fusion NS was expressed in

RESULTS: Heating at different temperatures (25°C, 37°C, 45°C, 65°C, 80°C) results in a further rise in β-structures accompanied by a fall of helices and no significant change in random coils. Structural changes in NS in the presence of CMA nanogel were less than that in the absence of CMA nanogel. Mater nanogel effectively prevented aggregation of NS during temperature induced protein refolding by the addition of cyclodextrins. The nanogel activity resembled the host-guest chaperon activity.

CONCLUSION: These conditions, called conformational disorders, include Alzheimer's, Parkinson's, Huntington's disease, the transmissible spongiform encephalopathies, prion diseases, and dementia. Nanogels can be useful in recovery of the structural normality of proteins in these diseases.

Keywords: Cyclodextrin; misfolding; nanogel (chitosan-myristic acid); neuroserpin

Conflict of interest statement

Conflicts of Interest: None declared.

References

  1. EMBO J. 1996 Jun 17;15(12):2944-53 - PubMed
  2. J Control Release. 2004 Nov 5;100(1):5-28 - PubMed
  3. Cell. 1983 Dec;35(2 Pt 1):349-58 - PubMed
  4. Iran Biomed J. 2007 Jan;11(1):41-46 - PubMed
  5. Biomacromolecules. 2010 Jan 11;11(1):6-12 - PubMed
  6. Science. 1996 Dec 20;274(5295):2079-82 - PubMed
  7. FEBS Lett. 2001 Sep 7;505(1):18-22 - PubMed
  8. Genomics. 1997 Feb 15;40(1):55-62 - PubMed
  9. Biochim Biophys Acta. 2005 Aug 10;1751(2):119-39 - PubMed
  10. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962-6 - PubMed
  11. Biomacromolecules. 2003 May-Jun;4(3):641-8 - PubMed
  12. J Agric Food Chem. 2003 May 7;51(10):3135-9 - PubMed
  13. J Struct Biol. 2000 Jun;130(2-3):184-208 - PubMed
  14. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4765-9 - PubMed
  15. Biochem J. 1997 May 15;324 ( Pt 1):1-18 - PubMed
  16. J Neurosci. 1997 Dec 1;17(23):8984-96 - PubMed
  17. Langmuir. 2009 Aug 18;25(16):8935-43 - PubMed
  18. Biomaterials. 2000 Dec;21(24):2589-98 - PubMed
  19. Int J Pharm. 2010 Mar 15;387(1-2):244-52 - PubMed
  20. Trends Biochem Sci. 1998 Feb;23(2):63-7 - PubMed
  21. Neuroscience. 2001;103(2):373-83 - PubMed
  22. Biosci Biotechnol Biochem. 1995 Oct;59(10):1901-4 - PubMed

Publication Types