Display options
Share it on

Ind Eng Chem Res. 2016 Nov 23;55(46):11857-11868. doi: 10.1021/acs.iecr.6b02718. Epub 2016 Oct 27.

Enhanced Model Predictive Control (eMPC) Strategy for Automated Glucose Control.

Industrial & engineering chemistry research

Joon Bok Lee, Eyal Dassau, Ravi Gondhalekar, Dale E Seborg, Jordan E Pinsker, Francis J Doyle

Affiliations

  1. Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA; William Sansum Diabetes Center, 2219 Bath Street, Santa Barbara, CA 93105.
  2. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA; William Sansum Diabetes Center, 2219 Bath Street, Santa Barbara, CA 93105.
  3. Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
  4. William Sansum Diabetes Center, 2219 Bath Street, Santa Barbara, CA 93105.

PMID: 27942106 PMCID: PMC5144164 DOI: 10.1021/acs.iecr.6b02718

Abstract

Development of an effective artificial pancreas (AP) controller to deliver insulin autonomously to people with type 1 diabetes mellitus is a difficult task. In this paper, three enhancements to a clinically validated AP model predictive controller (MPC) are proposed that address major challenges facing automated blood glucose control, and are then evaluated by both

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Lancet Diabetes Endocrinol. 2015 Jan;3(1):17-26 - PubMed
  2. Automatica (Oxf). 2016 Sep;71:237-246 - PubMed
  3. Diabetes Care. 2015 Nov;38(11):e186-7 - PubMed
  4. Diabetes Care. 2015 Jul;38(7):1205-11 - PubMed
  5. Diabetes Care. 2014 Aug;37(8):2310-6 - PubMed
  6. Lancet Diabetes Endocrinol. 2015 Dec;3(12):939-47 - PubMed
  7. Diabetes Care. 2013 Apr;36(4):801-9 - PubMed
  8. N Engl J Med. 2014 Jul 24;371(4):313-25 - PubMed
  9. Diabetes Obes Metab. 2015 Dec;17(12):1173-9 - PubMed
  10. Diabetes Care. 2014;37(5):1216-23 - PubMed
  11. IEEE Trans Biomed Eng. 2014 Oct;61(10):2569-81 - PubMed
  12. N Engl J Med. 1993 Sep 30;329(14):977-86 - PubMed
  13. N Engl J Med. 2015 Nov 26;373(22):2129-40 - PubMed
  14. Diabetes Care. 2013 Dec;36(12):3860-2 - PubMed
  15. J Diabetes Sci Technol. 2010 Jul 01;4(4):961-75 - PubMed
  16. Diabetes Technol Ther. 2002;4(3):295-303 - PubMed
  17. J Diabetes Sci Technol. 2009 May 01;3(3):536-44 - PubMed
  18. Diabetes Care. 2016 Jul;39(7):1135-42 - PubMed
  19. J Diabetes Sci Technol. 2007 Nov;1(6):825-33 - PubMed
  20. Diabetes. 2012 Nov;61(11):2987-92 - PubMed
  21. J Diabetes Sci Technol. 2015 Sep 14;9(6):1253-9 - PubMed
  22. N Engl J Med. 2013 Feb 28;368(9):824-33 - PubMed
  23. IEEE Trans Biomed Eng. 2012 Jul;59(7):1839-49 - PubMed
  24. Am J Physiol. 1979 Jun;236(6):E667-77 - PubMed
  25. Am J Physiol. 1979 Sep;237(3):E214-23 - PubMed
  26. Diabetes. 1974 May;23(5):397-404 - PubMed
  27. Diabetes Care. 2014 Nov;37(11):3025-32 - PubMed
  28. Diabetes Care. 2014 Jul;37(7):1789-96 - PubMed
  29. J Clin Endocrinol Metab. 2015 Oct;100(10 ):3878-86 - PubMed
  30. J Diabetes Sci Technol. 2012 Nov 01;6(6):1345-54 - PubMed
  31. Lancet. 2006 Mar 11;367(9513):847-58 - PubMed
  32. Diabetes Technol Ther. 2014 Jul;16(7):428-34 - PubMed
  33. J Clin Endocrinol Metab. 2011 May;96(5):1402-8 - PubMed
  34. Diabetes Care. 2014;37(5):1191-7 - PubMed
  35. J Diabetes Sci Technol. 2009 Jan;3(1):44-55 - PubMed

Publication Types

Grant support