Display options
Share it on

Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160466. doi: 10.1098/rspa.2016.0466.

Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto.

Proceedings. Mathematical, physical, and engineering sciences

Laura M Barge, Silvana S S Cardoso, Julyan H E Cartwright, Ivria J Doloboff, Erika Flores, Elena Macías-Sánchez, C Ignacio Sainz-Díaz, Pablo Sobrón

Affiliations

  1. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; NASA Astrobiology Institute, Icy Worlds, Pasadena, CA 91109, USA.
  2. Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB2 3RA , UK.
  3. Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain.
  4. Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain; Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain.
  5. Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR , Av. de las Palmeras, 4, 18100 Armilla, Granada , Spain.
  6. Carl Sagan Center, SETI Institute, Mountain View, CA, USA; Impossible Sensing, St Louis, MO, USA.

PMID: 27956875 PMCID: PMC5134306 DOI: 10.1098/rspa.2016.0466

Abstract

Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.

Keywords: Rio Tinto; astrobiology; chemical gardens; chemobrionics; iron oxide; tubular structures

References

  1. J Am Chem Soc. 2012 Sep 19;134(37):15519-27 - PubMed
  2. Chem Rev. 2015 Aug 26;115(16):8652-703 - PubMed
  3. Phys Chem Chem Phys. 2011 Jan 21;13(3):1030-6 - PubMed
  4. Appl Environ Microbiol. 2003 Aug;69(8):4853-65 - PubMed
  5. Langmuir. 2012 Feb 28;28(8):3714-21 - PubMed
  6. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8184-7 - PubMed
  7. Science. 2000 Mar 10;287(5459):1796-9 - PubMed
  8. Langmuir. 2005 Nov 22;21(24):10916-9 - PubMed
  9. Geobiology. 2011 May;9(3):233-49 - PubMed
  10. Microb Ecol. 2001 Jan;41(1):20-35 - PubMed
  11. Langmuir. 2011 Apr 5;27(7):3286-93 - PubMed
  12. Geophys Res Lett. 2014 Jul 16;41(13):4456-4462 - PubMed
  13. Astrobiology. 2001 Winter;1(4):447-65 - PubMed
  14. Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jan;71(5):1678-82 - PubMed
  15. Nat Commun. 2014 Dec 11;5:5743 - PubMed
  16. Science. 2014 Jan 24;343(6169):1242777 - PubMed
  17. Chem Commun (Camb). 2004 Mar 7;(5):481-7 - PubMed
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046312 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11537-41 - PubMed
  20. Sci Rep. 2015 Jun 30;5:10792 - PubMed
  21. Langmuir. 2011 Apr 5;27(7):3294-300 - PubMed
  22. Spectrochim Acta A Mol Biomol Spectrosc. 2007 Dec 15;68(4):1133-7 - PubMed
  23. Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9182-6 - PubMed

Publication Types