Display options
Share it on

J Atr Fibrillation. 2014 Aug 31;7(2):1035. doi: 10.4022/jafib.1035. eCollection 2014.

Vasovagal Syncope As A Manifestation Of An Evolutionary Selected Trait.

Journal of atrial fibrillation

Paolo Alboni, Marco Alboni

Affiliations

  1. Section of Cardiology and Syncope Unit, Ospedale Privato Quisisana, Ferrara, Italy.
  2. Department of Zoology and Anthropology, University of Sassari, Italy.

PMID: 27957092 PMCID: PMC5135249 DOI: 10.4022/jafib.1035

Abstract

Some observations suggest that typical (emotional or orthostatic) vasovagal syncope (VVS) is not a disease, but rather a manifestation of a non-pathological trait. We conducted an extensive bibliographic research on the vasovagal reactions in animals, including humans, in order to investigate the possible factors that may explain the origin and evolution of VVS. We found two processes which appear relevant for the investigation of VVS evolution: fear/threat bradycardia (alarm bradycardia) in animals, mainly during tonic immobility and vasovagal reflex during hemorrhagic shock (thoracic hypovolemia) both in animals and humans. The available data suggest that VVS in humans, alarm bradycardia in animals and the vasovagal reflex during hemorrhagic shock share the same physiological mechanisms and that is indicative of a common evolutionary root. However, during the vasovagal reflex loss of consciousness occurs in humans, but it is absent (or extremely rare) in animals. That can be explained as a by-product due to the erect position and the large brain evolved in our species. If the vasovagal reflex persisted for millions of years along the vertebrates evolutionary history, we can reasonably assume that it has a function and it is not harmful. It could be neutral or beneficial, but the available data suggest it is beneficial; likely, it evolved as an advantageous response to stressful and possibly dangerous heart conditions. Emotional or orthostatic vasovagal reflex is preceded by enhanced sympathetic activity, which is harmful and possibly dangerous. The transient inhibition of the sympathetic system, together with activation of the vagal tone , characterizes VVS. The consequent slowing of the heart rate induced by the vasovagal reflex may constitute a beneficial break of the cardiac pump, thereby reducing myocardial oxygen consumption. We suggest that typical VVS should be regarded as a selected response, which probably evolved in the ancient past as a defense mechanism of the organism within some ancestral group(s) of vertebrates.

Keywords: Bradycardia; Evolution; Hemorrhagic shock; Vasovagal syncope

References

  1. Acta Physiol Scand. 1985 Apr;123(4):393-8 - PubMed
  2. Clin Auton Res. 2004 Oct;14 Suppl 1:9-17 - PubMed
  3. Am J Cardiol. 2003 Apr 15;91(8):1006-8, A8 - PubMed
  4. Europace. 2007 Feb;9(2):83-7 - PubMed
  5. Psychol Bull. 1974 Nov;81(11):836-53 - PubMed
  6. N Engl J Med. 1989 Feb 9;320(6):390-2 - PubMed
  7. Am J Physiol. 1991 Feb;260(2 Pt 2):H305-18 - PubMed
  8. J Physiol. 1988 Aug;402:9-27 - PubMed
  9. Circulation. 1996 Mar 1;93(5):953-9 - PubMed
  10. Circulation. 1997 Jan 21;95(2):395-400 - PubMed
  11. J Pharmacol Exp Ther. 1985 Mar;232(3):656-60 - PubMed
  12. Lancet. 2001 Feb 3;357(9253):385-7 - PubMed
  13. Clin Auton Res. 2005 Apr;15(2):69-70 - PubMed
  14. Clin Auton Res. 2005 Jun;15(3):238-41 - PubMed
  15. Circulation. 2004 Oct 26;110(17):2575-81 - PubMed
  16. Am J Med. 1993 Aug;95(2):203-8 - PubMed
  17. Pacing Clin Electrophysiol. 1997 Feb;20(2 Pt 2):572-84 - PubMed
  18. Haematologica. 2003 Jun;88(6):688-93 - PubMed
  19. Scand J Clin Lab Invest. 1977 May;37(3):209-16 - PubMed
  20. Circulation. 2001 Aug 21;104(8):903-7 - PubMed
  21. Acta Physiol Scand. 1970 Nov;80(3):395-403 - PubMed
  22. Am Heart J. 1991 Dec;122(6):1644-51 - PubMed
  23. Clin Auton Res. 2003 Aug;13(4):247-55 - PubMed
  24. Nature. 1968 Dec 21;220(5173):1239-40 - PubMed
  25. Psychosom Med. 1970 Nov-Dec;32(6):633-47 - PubMed
  26. Europace. 2004 Nov;6(6):467-537 - PubMed
  27. J Am Coll Cardiol. 2001 Jun 1;37(7):1921-8 - PubMed
  28. Ann Intern Med. 1992 Mar 1;116(5):358-63 - PubMed
  29. Europace. 2008 Jun;10(6):751-9 - PubMed
  30. Nature. 1970 Mar 21;225(5238):1153-5 - PubMed
  31. Acta Physiol Scand. 1977 Jun;100(2):255-7 - PubMed
  32. Am J Physiol. 1988 Sep;255(3 Pt 2):H496-502 - PubMed
  33. J Cardiovasc Electrophysiol. 2006 Jan;17(1):49-54 - PubMed
  34. Circ Res. 1989 Apr;64(4):686-94 - PubMed
  35. Europace. 2000 Apr;2(2):172-80 - PubMed
  36. Circ Res. 1985 Oct;57(4):618-33 - PubMed
  37. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1486-95 - PubMed
  38. Neurosci Res (N Y). 1971;4:165-212 - PubMed
  39. Circulation. 1997 Oct 21;96(8):2509-13 - PubMed
  40. Circulation. 2003 Apr 1;107(12):1620-5 - PubMed
  41. Pacing Clin Electrophysiol. 1993 Apr;16(4 Pt 1):743-50 - PubMed
  42. Behav Processes. 1979 Jul;4(2):179-86 - PubMed
  43. Circ Res. 1970 Sep;27(3):311-20 - PubMed
  44. Clin Auton Res. 2008 Aug;18(4):170-8 - PubMed
  45. Nature. 1969 Jul 12;223(5202):207-8 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2002 May;282(5):H1804-9 - PubMed
  47. Br Med J (Clin Res Ed). 1986 Feb 8;292(6517):364-6 - PubMed
  48. Circulation. 1998 Oct 27;98(17):1756-61 - PubMed
  49. Eur Heart J. 2009 Nov;30(21):2631-71 - PubMed
  50. Circulation. 1995 Jul 1;92(1):54-8 - PubMed
  51. J Clin Invest. 1997 Jun 1;99(11):2736-44 - PubMed
  52. Pacing Clin Electrophysiol. 1997 Aug;20(8 Pt 2):2039-42 - PubMed
  53. J Auton Nerv Syst. 1982 Nov;6(3):287-91 - PubMed
  54. Can J Physiol Pharmacol. 1992 Jun;70(6):882-9 - PubMed
  55. Clin Sci (Lond). 1991 Nov;81(5):575-86 - PubMed
  56. Am J Cardiol. 1995 Aug 1;76(4):267-72 - PubMed
  57. J Physiol. 1967 Sep;192(2):561-74 - PubMed
  58. Circ Res. 1988 Jul;63(1):165-72 - PubMed
  59. Clin Auton Res. 2005 Apr;15(2):126-9 - PubMed
  60. J Am Coll Cardiol. 1995 Jun;25(7):1615-21 - PubMed
  61. J Physiol. 1951 Jan;112(1-2):223-8 - PubMed

Publication Types