Display options
Share it on

Front Behav Neurosci. 2016 Nov 29;10:227. doi: 10.3389/fnbeh.2016.00227. eCollection 2016.

Social Support Modulates Stress-Related Gene Expression in Various Brain Regions of Piglets.

Frontiers in behavioral neuroscience

Ellen Kanitz, Theresa Hameister, Armin Tuchscherer, Margret Tuchscherer, Birger Puppe

Affiliations

  1. Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN) Dummerstorf, Germany.
  2. Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN) Dummerstorf, Germany.
  3. Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN)Dummerstorf, Germany; Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of RostockRostock, Germany.

PMID: 27965550 PMCID: PMC5126102 DOI: 10.3389/fnbeh.2016.00227

Abstract

The presence of an affiliative conspecific may alleviate an individual's stress response in threatening conditions. However, the mechanisms and neural circuitry underlying the process of social buffering have not yet been elucidated. Using the domestic pig as an animal model, we examined the effect of a 4-h maternal and littermate deprivation on stress hormones and on mRNA expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2 and the immediate early gene c-fos in various brain regions of 7-, 21- and 35-day old piglets. The deprivation occurred either alone or with a familiar or unfamiliar age-matched piglet. Compared to piglets deprived alone, the presence of a conspecific animal significantly reduced free plasma cortisol concentrations and altered the MR/GR balance and 11ß-HSD2 and c-fos mRNA expression in the prefrontal cortex (PFC), amygdala and hypothalamus, but not in the hippocampus. The alterations in brain mRNA expression were particularly found in 21- or 35-day old piglets, which may reflect the species-specific postnatal ontogeny of the investigated brain regions. The buffering effects of social support were most pronounced in the amygdala, indicating its significance both for the assessment of social conspecifics as biologically relevant stimuli and for the processing of emotional states. In conclusion, the present findings provide further evidence for the importance of the cortico-limbic network underlying the abilities of individuals to cope with social stress and strongly emphasize the benefits of social partners in livestock with respect to positive welfare and health.

Keywords: HPA axis; limbic brain regions; mRNA expression; pig; social buffering; social deprivation

References

  1. Psychol Bull. 1985 Sep;98(2):310-57 - PubMed
  2. Am J Physiol. 1992 Dec;263(6 Pt 1):E1125-30 - PubMed
  3. Biol Neonate. 2002;81(3):203-9 - PubMed
  4. Endocr Rev. 1998 Jun;19(3):269-301 - PubMed
  5. J Neurosci. 2006 Aug 30;26(35):8915-22 - PubMed
  6. Physiol Rev. 2007 Jul;87(3):873-904 - PubMed
  7. Ann N Y Acad Sci. 2011 Aug;1231:17-22 - PubMed
  8. Neuropsychopharmacology. 2009 May;34(6):1406-15 - PubMed
  9. Mol Cell Endocrinol. 2006 Mar 27;248(1-2):9-14 - PubMed
  10. Psychoneuroendocrinology. 2008 Sep;33(8):1077-92 - PubMed
  11. J Neurosci Res. 2011 Jul;89(7):1134-41 - PubMed
  12. Stress. 1997 Aug;1(4):263-280 - PubMed
  13. Crit Rev Neurobiol. 1998;12(1-2):129-62 - PubMed
  14. Psychoneuroendocrinology. 2000 Aug;25(6):619-32 - PubMed
  15. Neurosci Biobehav Rev. 1997 Jan;21(1):11-29 - PubMed
  16. Neuroendocrinology. 1986;42(6):456-8 - PubMed
  17. Front Neuroendocrinol. 2014 Jan;35(1):111-39 - PubMed
  18. Res Vet Sci. 2009 Dec;87(3):380-8 - PubMed
  19. Ann Clin Biochem. 2002 Jul;39(Pt 4):406-8 - PubMed
  20. Biol Psychiatry. 2003 Dec 15;54(12):1389-98 - PubMed
  21. Pediatr Res. 2010 Dec;68(6):473-8 - PubMed
  22. Brain Res Bull. 1999 May;49(1-2):1-137 - PubMed
  23. Physiol Behav. 2009 Aug 4;98(1-2):176-85 - PubMed
  24. Physiol Behav. 1991 Oct;50(4):771-5 - PubMed
  25. Biol Psychiatry. 2001 Jan 15;49(2):146-57 - PubMed
  26. Psychol Bull. 2014 Jan;140(1):256-82 - PubMed
  27. Front Neurosci. 2015 Mar 25;9:99 - PubMed
  28. Endocrinology. 2003 Dec;144(12 ):5249-58 - PubMed
  29. Neuroimage. 2007 May 1;35(4):1601-12 - PubMed
  30. Neuron. 2005 Oct 20;48(2):175-87 - PubMed
  31. PLoS One. 2010 Oct 13;5(10):e13309 - PubMed
  32. Berl Munch Tierarztl Wochenschr. 2010 Jan-Feb;123(1-2):11-9 - PubMed
  33. Appl Anim Behav Sci. 2001 Jan 6;70(3):201-225 - PubMed
  34. Behav Brain Res. 2015 Jun 1;286:175-83 - PubMed
  35. Physiol Behav. 2014 May 28;131:25-32 - PubMed
  36. Brain Behav Immun. 2004 Jan;18(1):35-45 - PubMed
  37. Eur J Neurosci. 2012 Nov;36(10):3429-37 - PubMed
  38. Nat Rev Neurosci. 2005 Jun;6(6):463-75 - PubMed
  39. Stress. 2016 May;19(3):325-32 - PubMed
  40. Front Neuroendocrinol. 2003 Jul;24(3):151-80 - PubMed
  41. Neurosci Biobehav Rev. 2010 May;34(6):853-66 - PubMed
  42. Horm Behav. 2014 Mar;65(3):203-10 - PubMed
  43. PLoS One. 2012;7(12):e52748 - PubMed
  44. Horm Behav. 2006 Mar;49(3):383-90 - PubMed
  45. J Mol Endocrinol. 2005 Dec;35(3):531-45 - PubMed
  46. Physiol Behav. 2007 Oct 22;92(3):375-97 - PubMed
  47. Philos Trans R Soc Lond B Biol Sci. 2006 Dec 29;361(1476):2215-28 - PubMed
  48. Asian-Australas J Anim Sci. 2015 Nov;28(11):1662-8 - PubMed
  49. Physiol Behav. 2003 Aug;79(3):399-407 - PubMed
  50. Genes Brain Behav. 2010 Feb;9(1):75-83 - PubMed
  51. Horm Behav. 2012 Aug;62(3):314-23 - PubMed
  52. Brain Res. 2006 Jan 5;1067(1):36-42 - PubMed
  53. Front Neuroendocrinol. 2009 Oct;30(4):470-82 - PubMed
  54. Front Neuroendocrinol. 2011 Aug;32(3):265-86 - PubMed

Publication Types