Display options
Share it on

Sci Rep. 2016 Dec 19;6:38809. doi: 10.1038/srep38809.

Inertial Focusing of Microparticles in Curvilinear Microchannels.

Scientific reports

Arzu Özbey, Mehrdad Karimzadehkhouei, Sarp Akgönül, Devrim Gozuacik, Ali Koşar

Affiliations

  1. Faculty of Engineering and Natural Science, Molecular Genetics and Bioengineering Program, Sabanci University, Orhanli-Tuzla, Istanbul, 34956, Turkey.
  2. Faculty of Engineering and Natural Science, Biological Sciences and Bioengineering Program, Sabanci University, Orhanli-Tuzla, Istanbul, 34956, Turkey.
  3. Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli-Tuzla, Istanbul, 34956, Turkey.

PMID: 27991494 PMCID: PMC5171716 DOI: 10.1038/srep38809

Abstract

A passive, continuous and size-dependent focusing technique enabled by "inertial microfluidics", which takes advantage of hydrodynamic forces, is implemented in this study to focus microparticles. The objective is to analyse the decoupling effects of inertial forces and Dean drag forces on microparticles of different sizes in curvilinear microchannels with inner radius of 800 μm and curvature angle of 280°, which have not been considered in the literature related to inertial microfluidics. This fundamental approach gives insight into the underlying physics of particle dynamics and offers continuous, high-throughput, label-free and parallelizable size-based particle separation. Our design allows the same footprint to be occupied as straight channels, which makes parallelization possible with optical detection integration. This feature is also useful for ultrahigh-throughput applications such as flow cytometers with the advantages of reduced cost and size. The focusing behaviour of 20, 15 and 10 μm fluorescent polystyrene microparticles was examined for different channel Reynolds numbers. Lateral and vertical particle migrations and the equilibrium positions of these particles were investigated in detail, which may lead to the design of novel microfluidic devices with high efficiency and high throughput for particle separation, rapid detection and diagnosis of circulating tumour cells with reduced cost.

References

  1. Small. 2013 Jan 14;9(1):9-21 - PubMed
  2. Anal Chem. 2015 May 5;87(9):4627-32 - PubMed
  3. Anal Chem. 2008 Mar 15;80(6):2204-11 - PubMed
  4. Lab Chip. 2008 Nov;8(11):1906-14 - PubMed
  5. Biomicrofluidics. 2013 Aug 08;7(4):44116 - PubMed
  6. Anal Chem. 2009 Oct 15;81(20):8459-65 - PubMed
  7. Small. 2013 Aug 26;9(16):2764-73, 2828 - PubMed
  8. Sci Rep. 2013;3:1475 - PubMed
  9. New J Phys. 2009 Jul 1;11:75025 - PubMed
  10. Lab Chip. 2015 Mar 7;15(5):1230-49 - PubMed
  11. Nature. 2014 Mar 13;507(7491):181-9 - PubMed
  12. Anal Chem. 2009 Mar 15;81(6):2303-10 - PubMed
  13. Lab Chip. 2014 Feb 21;14(4):626-45 - PubMed
  14. Phys Rev Lett. 2009 Mar 6;102(9):094503 - PubMed
  15. Lab Chip. 2015 Apr 21;15(8):1812-21 - PubMed
  16. J Chromatogr A. 2011 Jul 8;1218(27):4138-43 - PubMed
  17. Biomicrofluidics. 2013 Aug 21;7(4):44119 - PubMed
  18. Lab Chip. 2014 Jan 7;14(1):45-56 - PubMed
  19. Lab Chip. 2007 Dec;7(12):1644-59 - PubMed
  20. Lab Chip. 2011 Feb 7;11(3):460-5 - PubMed
  21. Lab Chip. 2015 Feb 21;15(4):959-70 - PubMed
  22. Electrophoresis. 2014 Mar;35(5):691-713 - PubMed
  23. Chem Soc Rev. 2010 Mar;39(3):1203-17 - PubMed
  24. Adv Drug Deliv Rev. 2013 Nov;65(11-12):1600-10 - PubMed
  25. Lab Chip. 2015 Dec 21;15(24):4500-11 - PubMed
  26. Med Biol Eng Comput. 2010 Oct;48(10):999-1014 - PubMed
  27. Small. 2016 Apr 13;12 (14 ):1891-9 - PubMed
  28. Lab Chip. 2009 Jan 7;9(1):87-90 - PubMed
  29. Lab Chip. 2009 Oct 21;9(20):2973-80 - PubMed
  30. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18892-7 - PubMed
  31. Lab Chip. 2014 Aug 7;14 (15):2739-61 - PubMed
  32. Microfluid Nanofluidics. 2013 Nov 1;15(5):null - PubMed
  33. Anal Chem. 2010 May 1;82(9):3862-7 - PubMed
  34. Anal Chem. 2009 Oct 15;81(20):8280-8 - PubMed
  35. Lab Chip. 2009 Nov 7;9(21):3038-46 - PubMed
  36. Chem Eng Sci. 2011 Apr 1;66(7):1508-1522 - PubMed
  37. Lab Chip. 2016 Jan 7;16(1):10-34 - PubMed
  38. Annu Rev Biomed Eng. 2014 Jul 11;16:371-96 - PubMed
  39. Lab Chip. 2013 Mar 21;13(6):1121-32 - PubMed
  40. Lab Chip. 2011 Jan 7;11(1):93-9 - PubMed
  41. Sci Rep. 2014 Mar 31;4:4527 - PubMed
  42. Nature. 2006 Jul 27;442(7101):368-73 - PubMed

Publication Types