Display options
Share it on

Sci Rep. 2017 Jan 31;7:41739. doi: 10.1038/srep41739.

Deliberate Switching of Single Photochromic Triads.

Scientific reports

Johannes Maier, Martti Pärs, Tina Weller, Mukundan Thelakkat, Jürgen Köhler

Affiliations

  1. Experimental Physics IV, University of Bayreuth, 95440 Bayreuth, Germany.
  2. Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany.

PMID: 28139764 PMCID: PMC5282491 DOI: 10.1038/srep41739

Abstract

Photochromic molecules can be reversibly converted between two bistable conformations by light, and are considered as promising building blocks in novel macromolecular structures for sensing and imaging techniques. We have studied individual molecular triads consisting of two strong fluorophores (perylene bisimide) that are covalently linked via a photochromic unit (dithienylcyclopentene) and distinguished between deliberate switching and spontaneous blinking. It was verified that the probability for observing deliberate light-induced switching of a single triad (rather than stochastic blinking) amounts to 0.8 ± 0.1. In a few exceptional cases this probability can exceed 0.95. These numbers are sufficiently large for application in sensitive biosensing, and super-resolution imaging. This opens the possibility to develop devices that can be controlled by an external optical stimulus on a truly molecular length scale.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. Angew Chem Int Ed Engl. 2016 Oct 4;55(41):12698-702 - PubMed
  2. J Am Chem Soc. 2011 Apr 6;133(13):4984-90 - PubMed
  3. J Phys Chem Lett. 2016 Jun 2;7(11):2113-8 - PubMed
  4. Photochem Photobiol Sci. 2010 Feb;9(2):181-7 - PubMed
  5. Chem Soc Rev. 2014 Feb 21;43(4):1076-87 - PubMed
  6. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8034-53 - PubMed
  7. Nat Commun. 2015 Mar 05;6:6330 - PubMed
  8. Nat Chem. 2012 Jun 24;4(8):675-9 - PubMed
  9. Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7462-5 - PubMed
  10. Chem Rev. 2000 May 10;100(5):1717-1740 - PubMed
  11. J Am Chem Soc. 2004 Nov 17;126(45):14843-9 - PubMed
  12. Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9068-93 - PubMed
  13. Chem Rev. 2000 May 10;100(5):1685-1716 - PubMed
  14. Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3662-6 - PubMed
  15. Annu Rev Phys Chem. 2009;60:407-28 - PubMed
  16. Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8067-93 - PubMed
  17. Chem Phys Lett. 2010 Apr 9;489(4-6):175-180 - PubMed
  18. Sci Rep. 2014 Mar 11;4:4316 - PubMed
  19. Chemphyschem. 2005 May;6(5):770-89 - PubMed
  20. Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11405-8 - PubMed
  21. Phys Rev Lett. 2012 Dec 14;109(24):248101 - PubMed
  22. J Phys Chem A. 2007 Sep 20;111(37):8910-7 - PubMed
  23. J Am Chem Soc. 2002 Mar 20;124(11):2438-9 - PubMed
  24. Adv Mater. 2013 Jan 18;25(3):378-99 - PubMed
  25. J Am Chem Soc. 2007 May 9;129(18):5932-8 - PubMed
  26. Chemphyschem. 2007 Jul 16;8(10):1487-96 - PubMed
  27. Chem Rev. 2014 Dec 24;114(24):12174-277 - PubMed
  28. Nat Commun. 2014 Dec 12;5:5709 - PubMed
  29. Nature. 2002 Dec 19-26;420(6917):759-60 - PubMed
  30. Chem Rev. 2000 May 10;100(5):1741-1754 - PubMed

Publication Types