Display options
Share it on

Neoplasia. 2017 Mar;19(3):145-153. doi: 10.1016/j.neo.2016.12.005. Epub 2017 Jan 28.

Synergistic Activity of N-hydroxy-7-(2-naphthylthio) Heptanomide and Sorafenib Against Cancer Stem Cells, Anaplastic Thyroid Cancer.

Neoplasia (New York, N.Y.)

Ki Cheong Park, Seok-Mo Kim, Jeong Yong Jeon, Bup-Woo Kim, Hyeung Kyoo Kim, Ho Jin Chang, Yong Sang Lee, Soo Young Kim, Seung Hoon Choi, Cheong Soo Park, Hang-Seok Chang

Affiliations

  1. Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
  2. Department of Nuclear Medicine, Yonsei College of Medicine, Seoul 120-752, Republic of Korea.
  3. Thyroid Cancer Center, Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Gangnam Severance Hospital, Department of Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea. Electronic address: [email protected].

PMID: 28142087 PMCID: PMC5279904 DOI: 10.1016/j.neo.2016.12.005

Abstract

Anaplastic thyroid carcinoma (ATC) although rare is the most deadly form of thyroid cancer. The fatality rate for ATC is high-pitched, the survival rate at 1 year after diagnosis is <20%. Control of ATC is severely hard and widespread with unpredictability. We Previous proved that histone gene reviser and epigenetic changes role significant parts in papillary and anaplastic thyroid cancer tumorigenesis. Herein, the goal of this study was to investigate the anti-tumor activities of a HDAC inhibitor, HNHA alone and in combination with sorafenib in ATC cells in vitro and in vivo and to explore its effects on apoptotic cell death pathways. Three ATC cell lines were exposed to sorafenib in the presence or absence of HNHA, and cell viability was determined by MTT assay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and western blot analysis. The ATC cell lines xenograft model was used to examine the anti-tumor activity in vivo. Our data showed that HNHA and sorafenib synergistically decreased cell viability in ATC cells, and also significantly increased apoptotic cell death in these cells, as proved by the cleavage of caspase-3 and DNA fragmentation. HNHA and sorafenib combination was reduced anti-apoptotic factor in ATC. Thus, combination therapy with HNHA and sorafenib significantly decreased vessel density, and most significantly reduced tumor volume and increased survival in ATC xenografts. These results propose that HNHA in combination with sorafenib has significant anti-cancer activity in preclinical models, potentially suggesting a new clinical approach for patients of advanced thyroid cancer type.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

References

  1. Cancer Control. 2006 Apr;13(2):119-28 - PubMed
  2. Clin Cancer Res. 2014 Mar 1;20(5):1274-87 - PubMed
  3. BMC Cancer. 2010 Oct 15;10:560 - PubMed
  4. J Clin Invest. 2014 Jan;124(1):30-9 - PubMed
  5. Oncogene. 2005 Oct 20;24(46):6861-9 - PubMed
  6. Oncogene. 2003 Jul 17;22(29):4578-80 - PubMed
  7. Bioessays. 2010 Nov;32(11):949-57 - PubMed
  8. Gland Surg. 2015 Feb;4(1):44-51 - PubMed
  9. Nature. 2002 Jun 27;417(6892):949-54 - PubMed
  10. J Biol Chem. 2005 Oct 21;280(42):35217-27 - PubMed
  11. Cancer Sci. 2011 Feb;102(2):343-50 - PubMed
  12. Adv Cancer Res. 2012;116:39-86 - PubMed
  13. J Hepatol. 2011 Nov;55(5):1041-8 - PubMed
  14. Clin Cancer Res. 2007 Jul 15;13(14):4280-90 - PubMed
  15. Curr Opin Endocrinol Diabetes Obes. 2015 Oct;22(5):387-91 - PubMed
  16. N Engl J Med. 2008 Jul 24;359(4):378-90 - PubMed
  17. BMC Cancer. 2015 Mar 26;15:184 - PubMed
  18. DNA Repair (Amst). 2010 Jun 4;9(6):627-35 - PubMed
  19. PLoS One. 2013 Sep 26;8(9):e75414 - PubMed
  20. Mod Pathol. 2004 Nov;17(11):1359-63 - PubMed
  21. Oncogene. 1999 Feb 4;18(5):1131-8 - PubMed
  22. Future Oncol. 2010 May;6(5):655-63 - PubMed
  23. J Hepatol. 2012 Jun;56(6):1343-50 - PubMed
  24. Oncogene. 2003 Dec 11;22(57):9192-6 - PubMed
  25. Mol Cancer Ther. 2008 Oct;7(10 ):3129-40 - PubMed
  26. World J Hepatol. 2013 Jul 27;5(7):345-52 - PubMed
  27. Expert Opin Drug Discov. 2015 Apr;10(4):427-39 - PubMed
  28. Nat Rev Drug Discov. 2006 Sep;5(9):769-84 - PubMed
  29. Mod Pathol. 2008 May;21 Suppl 2:S37-43 - PubMed
  30. BMC Cancer. 2015 Jan 23;15:19 - PubMed
  31. J Clin Endocrinol Metab. 2012 Jun;97(6):E898-906 - PubMed
  32. Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1241-6 - PubMed
  33. Clin Cancer Res. 2005 May 15;11(10):3958-65 - PubMed
  34. J Hepatol. 2011 Nov;55(5):957-9 - PubMed
  35. BMC Cancer. 2015 Dec 23;15:1003 - PubMed
  36. Cell Death Dis. 2013 Feb 28;4:e519 - PubMed
  37. Int J Endocrinol. 2015;2015:978371 - PubMed
  38. Cancer Biol Ther. 2011 Nov 1;12(9):827-36 - PubMed
  39. Cancer Lett. 2009 May 8;277(1):8-21 - PubMed
  40. Leukemia. 2002 Jul;16(7):1331-43 - PubMed
  41. Nat Rev Drug Discov. 2006 Oct;5(10):835-44 - PubMed
  42. Cancer Lett. 2009 Aug 8;280(2):168-76 - PubMed
  43. Cancer Res. 2006 Dec 15;66(24):11851-8 - PubMed
  44. J Med Life. 2013;6(4):403-8 - PubMed
  45. Biomed Rep. 2015 Jan;3(1):3-8 - PubMed
  46. Am Health Drug Benefits. 2015 Feb;8(1):30-40 - PubMed
  47. Mol Clin Oncol. 2014 Jan;2(1):87-92 - PubMed
  48. Oncology. 2007;72(1-2):69-74 - PubMed
  49. Endocr Relat Cancer. 2016 Apr;23 (4):R185-205 - PubMed
  50. Mutat Res. 2010 Apr-Jun;704(1-3):12-20 - PubMed

Publication Types