Display options
Share it on

Nature. 2017 Jan 11;541(7636):191-195. doi: 10.1038/nature20604.

Sideband cooling beyond the quantum backaction limit with squeezed light.

Nature

Jeremy B Clark, Florent Lecocq, Raymond W Simmonds, José Aumentado, John D Teufel

Affiliations

  1. National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

PMID: 28079081 DOI: 10.1038/nature20604

Abstract

Quantum fluctuations of the electromagnetic vacuum produce measurable physical effects such as Casimir forces and the Lamb shift. They also impose an observable limit-known as the quantum backaction limit-on the lowest temperatures that can be reached using conventional laser cooling techniques. As laser cooling experiments continue to bring massive mechanical systems to unprecedentedly low temperatures, this seemingly fundamental limit is increasingly important in the laboratory. Fortunately, vacuum fluctuations are not immutable and can be 'squeezed', reducing amplitude fluctuations at the expense of phase fluctuations. Here we propose and experimentally demonstrate that squeezed light can be used to cool the motion of a macroscopic mechanical object below the quantum backaction limit. We first cool a microwave cavity optomechanical system using a coherent state of light to within 15 per cent of this limit. We then cool the system to more than two decibels below the quantum backaction limit using a squeezed microwave field generated by a Josephson parametric amplifier. From heterodyne spectroscopy of the mechanical sidebands, we measure a minimum thermal occupancy of 0.19 ± 0.01 phonons. With our technique, even low-frequency mechanical oscillators can in principle be cooled arbitrarily close to the motional ground state, enabling the exploration of quantum physics in larger, more massive systems.

References

  1. Nature. 2012 Feb 01;482(7383):63-7 - PubMed
  2. Nature. 2016 Feb 18;530(7590):313-6 - PubMed
  3. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16182-7 - PubMed
  4. Nature. 2010 Apr 1;464(7289):697-703 - PubMed
  5. Phys Rev Lett. 2016 Sep 9;117(11):110801 - PubMed
  6. Nature. 2015 Aug 20;524(7565):325-9 - PubMed
  7. Nature. 2013 Aug 8;500(7461):185-9 - PubMed
  8. Phys Rev Lett. 2015 Mar 6;114(9):093602 - PubMed
  9. Nature. 2011 Oct 05;478(7367):89-92 - PubMed
  10. Phys Rev A. 1994 May;49(5):4055-4065 - PubMed
  11. Phys Rev A. 1993 Mar;47(3):2191-2195 - PubMed
  12. Phys Rev Lett. 1990 Jun 11;64(24):2905-2908 - PubMed
  13. Phys Rev Lett. 2013 Apr 12;110(15):153606 - PubMed
  14. Phys Rev Lett. 2007 Aug 31;99(9):093901 - PubMed
  15. Phys Rev Lett. 2007 Aug 31;99(9):093902 - PubMed
  16. Nature. 2011 Jul 06;475(7356):359-63 - PubMed
  17. Phys Rev Lett. 2009 May 22;102(20):207209 - PubMed
  18. Phys Rev Lett. 2016 Feb 12;116(6):063601 - PubMed
  19. Nature. 2012 Aug 23;488(7412):476-80 - PubMed
  20. Phys Rev A. 1994 Feb;49(2):1337-1343 - PubMed
  21. Phys Rev A. 1991 Dec 1;44(11):7777-7784 - PubMed
  22. Nature. 2011 Mar 10;471(7337):204-8 - PubMed
  23. Phys Rev Lett. 2008 Dec 31;101(26):263602 - PubMed

Publication Types