Display options
Share it on

Nat Commun. 2017 Feb 09;8:14425. doi: 10.1038/ncomms14425.

Using graphene networks to build bioinspired self-monitoring ceramics.

Nature communications

Olivier T Picot, Victoria G Rocha, Claudio Ferraro, Na Ni, Eleonora D'Elia, Sylvain Meille, Jerome Chevalier, Theo Saunders, Ton Peijs, Mike J Reece, Eduardo Saiz

Affiliations

  1. School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
  2. Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, London SW7 2AZ, UK.
  3. Université de Lyon, INSA Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne, France.
  4. Nanoforce Technology Limited, Mile End Road, London E14NS, UK.

PMID: 28181518 PMCID: PMC5309856 DOI: 10.1038/ncomms14425

Abstract

The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor 'in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

References

  1. Nat Commun. 2011 Feb 01;2:173 - PubMed
  2. ACS Nano. 2011 Apr 26;5(4):3182-90 - PubMed
  3. Nat Commun. 2016 Jan 28;7:10546 - PubMed
  4. Nat Mater. 2014 May;13(5):508-14 - PubMed
  5. ACS Nano. 2010 Aug 24;4(8):4806-14 - PubMed
  6. Nat Mater. 2011 Feb;10(2):123-8 - PubMed
  7. Nat Mater. 2015 Jan;14(1):23-36 - PubMed
  8. Nanotechnology. 2008 Jul 2;19(26):265607 - PubMed
  9. ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28508-17 - PubMed
  10. Nanotechnology. 2008 May 14;19(19):195710 - PubMed
  11. Sci Rep. 2015 Sep 08;5:13712 - PubMed
  12. Adv Mater. 2015 Aug 26;27(32):4788-94 - PubMed
  13. Bioinspir Biomim. 2015 Mar 30;10(2):026005 - PubMed
  14. Nat Mater. 2003 Jan;2(1):38-42 - PubMed
  15. Nat Commun. 2014 Jul 07;5:4328 - PubMed
  16. Nat Mater. 2015 Nov;14(11):1172-9 - PubMed
  17. Nat Commun. 2014;5:3166 - PubMed
  18. Science. 2008 Dec 5;322(5907):1516-20 - PubMed
  19. Adv Mater. 2015 Oct 7;27(37):5455-76 - PubMed
  20. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed

Publication Types