Display options
Share it on

Sci Rep. 2017 Feb 09;7:42351. doi: 10.1038/srep42351.

Trapping Phenomenon Attenuates the Consequences of Tipping Points for Limit Cycles.

Scientific reports

Everton S Medeiros, Iberê L Caldas, Murilo S Baptista, Ulrike Feudel

Affiliations

  1. Institute of Physics, University of São Paulo, São Paulo, Brazil.
  2. Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom.
  3. Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.

PMID: 28181582 PMCID: PMC5299408 DOI: 10.1038/srep42351

Abstract

Nonlinear dynamical systems may be exposed to tipping points, critical thresholds at which small changes in the external inputs or in the system's parameters abruptly shift the system to an alternative state with a contrasting dynamical behavior. While tipping in a fold bifurcation of an equilibrium is well understood, much less is known about tipping of oscillations (limit cycles) though this dynamics are the typical response of many natural systems to a periodic external forcing, like e.g. seasonal forcing in ecology and climate sciences. We provide a detailed analysis of tipping phenomena in periodically forced systems and show that, when limit cycles are considered, a transient structure, so-called channel, plays a fundamental role in the transition. Specifically, we demonstrate that trajectories crossing such channel conserve, for a characteristic time, the twisting behavior of the stable limit cycle destroyed in the fold bifurcation of cycles. As a consequence, this channel acts like a "ghost" of the limit cycle destroyed in the critical transition and instead of the expected abrupt transition we find a smooth one. This smoothness is also the reason that it is difficult to precisely determine the transition point employing the usual indicators of tipping points, like critical slowing down and flickering.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. Nature. 2009 Sep 3;461(7260):53-9 - PubMed
  2. Trends Ecol Evol. 1997 Aug;12(9):352-6 - PubMed
  3. Phys Rev Lett. 2002 Feb 11;88(6):063901 - PubMed
  4. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20590-5 - PubMed
  5. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt A):5253-60 - PubMed
  6. Am Nat. 2007 Jun;169(6):738-47 - PubMed
  7. Nature. 2002 Sep 12;419(6903):207-14 - PubMed
  8. Phys Rev Lett. 1996 Jan 22;76(4):708-711 - PubMed
  9. Nature. 2001 Oct 11;413(6856):591-6 - PubMed
  10. Philos Trans A Math Phys Eng Sci. 2012 Mar 13;370(1962):1185-204 - PubMed
  11. J Neurophysiol. 1993 Jun;69(6):2252-7 - PubMed
  12. Phys Rev Lett. 2002 Jan 21;88(3):034102 - PubMed
  13. Nature. 2007 Sep 13;449(7159):213-7 - PubMed
  14. Ecol Lett. 2010 Apr;13(4):464-72 - PubMed
  15. Nature. 2001 Jan 11;409(6817):153-8 - PubMed
  16. Nature. 2012 Dec 20;492(7429):419-22 - PubMed
  17. Chaos. 2003 Sep;13(3):926-36 - PubMed
  18. Science. 2006 Jul 28;313(5786):455-6 - PubMed
  19. Science. 1994 Sep 9;265(5178):1547-51 - PubMed
  20. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):28-32 - PubMed
  21. Phys Rev B Condens Matter. 1994 Jul 15;50(3):1705-1712 - PubMed

Publication Types