Display options
Share it on

Chemistry. 2017 Mar 28;23(18):4353-4363. doi: 10.1002/chem.201604803. Epub 2017 Mar 02.

Crystal Structures of Diaryliodonium Fluorides and Their Implications for Fluorination Mechanisms.

Chemistry (Weinheim an der Bergstrasse, Germany)

Yong-Sok Lee, Joong-Hyun Chun, Milan Hodošček, Victor W Pike

Affiliations

  1. Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Building 12A, Rm 2049, Bethesda, MD, 20892, USA.
  2. Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD, 20892, USA.
  3. Present address: Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, South Korea.
  4. National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
  5. National Institute of Chemistry, Ljubljana, Slovenia.

PMID: 28145069 PMCID: PMC5687088 DOI: 10.1002/chem.201604803

Abstract

The radiofluorination of diaryliodonium salts is of value for producing radiotracers for positron emission tomography. We report crystal structures for two diaryliodonium fluorides. Whereas diphenyliodonium fluoride (1 a) exists as a tetramer bridged by four fluoride ions, 2-methylphenyl(phenyl)iodonium fluoride (2 a) forms a fluoride-bridged dimer that is further halogen bonded to two other monomers. We discuss the topological relationships between the two and their implications for fluorination in solution. Both radiofluorination and NMR spectroscopy show that thermolysis of 2 a gives 2-fluorotoluene and fluorobenzene in a 2 to 1 ratio that is in good agreement with the ratio observed from the radiofluorination of 2-methylphenyl(phenyl)iodonium chloride (2 b). The constancy of the product ratio affirms that the fluorinations occur via the same two rapidly interconverting transition states whose energy difference dictates chemoselectivity. From quantum chemical studies with density functional theory we attribute the "ortho-effect" to the favorable electrostatic interaction between the incoming fluoride and the o-methyl in the transition state. By utilizing the crystal structures of 1 a and 2 a, the mechanisms of fluoroarene formation from diaryliodonium fluorides in their monomeric, homodimeric, heterodimeric, and tetrameric states were also investigated. We propose that oligomerization energy dictates whether the fluorination occurs through a monomeric or an oligomeric pathway.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: chemoselectivity; ortho-effect; quantum chemistry; radiofluorination; reaction pathway

References

  1. Org Lett. 2012 Aug 3;14(15):3830-3 - PubMed
  2. Mol Imaging Biol. 2014 Oct;16(5):619-25 - PubMed
  3. European J Org Chem. 2012 Aug 1;2012(24):4541-4547 - PubMed
  4. Org Biomol Chem. 2011 Dec 21;9(24):8346-55 - PubMed
  5. Chemistry. 2010 Sep 10;16(34):10418-23 - PubMed
  6. Org Biomol Chem. 2011 Oct 7;9(19):6629-38 - PubMed
  7. Science. 1970 Apr 10;168(3928):248-9 - PubMed
  8. Chem Commun (Camb). 2012 Oct 11;48(79):9921-3 - PubMed
  9. Angew Chem Int Ed Engl. 2009;48(48):9052-70 - PubMed
  10. European J Org Chem. 2011 Aug;2011(23):4439-4447 - PubMed
  11. Biophys J. 2001 Sep;81(3):1632-42 - PubMed
  12. Chem Rev. 2016 Mar 9;116(5):3328-435 - PubMed
  13. Chem Commun (Camb). 2007 Jun 28;(24):2521-3 - PubMed
  14. J Org Chem. 2010 May 21;75(10):3332-8 - PubMed
  15. J Med Chem. 2013 Sep 26;56(18):7312-23 - PubMed
  16. Org Biomol Chem. 2013 Oct 7;11(37):6300-6 - PubMed
  17. Chemistry. 2013 Jul 29;19(31):10334-42 - PubMed
  18. J Med Chem. 2016 Oct 13;59(19):8955-8966 - PubMed
  19. J Labelled Comp Radiopharm. 2011 Apr;54(4):224-228 - PubMed
  20. Appl Radiat Isot. 2008 Oct;66(10):1341-5 - PubMed
  21. Chem Commun (Camb). 2005 Dec 21;(47):5902-3 - PubMed
  22. J Am Chem Soc. 2007 Jun 27;129(25):8018-25 - PubMed
  23. J Labelled Comp Radiopharm. 2016 Jan;59(1):30-4 - PubMed
  24. J Org Chem. 2013 Aug 16;78(16):8176-83 - PubMed
  25. Chem Rev. 2016 Jan 27;116(2):719-66 - PubMed
  26. J Med Chem. 2013 Nov 27;56(22):9146-55 - PubMed
  27. J Org Chem. 2012 Feb 17;77(4):1931-8 - PubMed
  28. Chemistry. 2016 Aug 22;22(35):12332-9 - PubMed
  29. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9226-33 - PubMed
  30. Curr Top Med Chem. 2014;14(7):875-900 - PubMed
  31. J Med Chem. 2013 Jun 27;56(12):4912-20 - PubMed
  32. Org Lett. 2005 Sep 1;7(18):3961-4 - PubMed
  33. Org Biomol Chem. 2013 Aug 21;11(31):5094-9 - PubMed
  34. J Org Chem. 2008 Jun 20;73(12):4602-7 - PubMed
  35. Chem Rev. 2015 Jan 28;115(2):612-33 - PubMed

Publication Types

Grant support