Display options
Share it on

Front Neurosci. 2017 Jan 26;10:604. doi: 10.3389/fnins.2016.00604. eCollection 2016.

Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks.

Frontiers in neuroscience

Antonio I Triggiani, Vitoantonio Bevilacqua, Antonio Brunetti, Roberta Lizio, Giacomo Tattoli, Fabio Cassano, Andrea Soricelli, Raffaele Ferri, Flavio Nobili, Loreto Gesualdo, Maria R Barulli, Rosanna Tortelli, Valentina Cardinali, Antonio Giannini, Pantaleo Spagnolo, Silvia Armenise, Fabrizio Stocchi, Grazia Buenza, Gaetano Scianatico, Giancarlo Logroscino, Giordano Lacidogna, Francesco Orzi, Carla Buttinelli, Franco Giubilei, Claudio Del Percio, Giovanni B Frisoni, Claudio Babiloni

Affiliations

  1. Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy.
  2. Department of Electrical and Information Engineering, Polytechnic of Bari Bari, Italy.
  3. Department of Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza"Rome, Italy; Department of Neuroscience, IRCCS San Raffaele PisanaRome, Italy.
  4. Department of Integrated Imaging, IRCCS Istituto di Ricerca Diagnostica e NucleareNapoli, Italy; Department of Motor Sciences and Healthiness, University of Naples ParthenopeNaples, Italy.
  5. Department of Neurology, IRCCS Oasi Institute for Research on Mental Retardation and Brain Aging Enna, Italy.
  6. Clinical Neurology Unit, Department of Neuroscience, University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST Genoa, Italy.
  7. Dipartimento Emergenza e Trapianti d'Organi, University of Bari Bari, Italy.
  8. Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari "Aldo Moro", Pia Fondazione Cardinale G. Panico Lecce, Italy.
  9. Department of Clinical Research in Neurology, University of Bari "Aldo Moro", Pia Fondazione Cardinale G. Panico Lecce, Italy.
  10. Department of Clinical Research in Neurology, University of Bari "Aldo Moro", Pia Fondazione Cardinale G. PanicoLecce, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro"Bari, Italy.
  11. Department of Imaging-Division of Radiology, Hospital "Di Venere" Bari, Italy.
  12. Division of Neuroradiology, "F. Ferrari" Hospital Lecce, Italy.
  13. Department of Neuroscience, IRCCS San Raffaele Pisana Rome, Italy.
  14. Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, University of Bari "Aldo Moro", Pia Fondazione Cardinale G. PanicoLecce, Italy; Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro"Bari, Italy.
  15. Center for Neuropsychological Research, Institute of Neurology of the Policlinico Gemelli/Catholic University of Rome Italy.
  16. Department of Neuroscience, Mental Health and Sensory Organs, University of Rome "La Sapienza" Rome, Italy.
  17. Department of Integrated Imaging, IRCCS Istituto di Ricerca Diagnostica e Nucleare Napoli, Italy.
  18. Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Centro "S. Giovanni di Dio-F.B.F."Brescia, Italy; Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of GenevaGeneva, Switzerland.

PMID: 28184183 PMCID: PMC5266711 DOI: 10.3389/fnins.2016.00604

Abstract

Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2-4 Hz), theta (4-8 Hz Hz), alpha1 (8-10.5 Hz), and alpha2 (10.5-13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification.

Keywords: Alzheimer's disease (AD); artificial neural networks (ANNs); electroencephalography (EEG); exact low-resolution brain electromagnetic tomography (eLORETA); linear lagged connectivity

References

  1. Neuropsychobiology. 1997;36(3):153-8 - PubMed
  2. Neurobiol Aging. 2011 Apr;32(4):563-71 - PubMed
  3. J Neurosci Methods. 1997 Apr 25;73(1):49-60 - PubMed
  4. Clin Neurophysiol. 2013 Mar;124(3):437-51 - PubMed
  5. Electroencephalogr Clin Neurophysiol. 1997 Aug;103(2):241-8 - PubMed
  6. Med Biol Eng Comput. 2011 May;49(5):521-9 - PubMed
  7. Neurophysiol Clin. 1997 Jun;27(3):211-9 - PubMed
  8. Dement Geriatr Cogn Disord. 2015;40(1-2):1-12 - PubMed
  9. J Neural Transm (Vienna). 2003 Sep;110(9):1051-8 - PubMed
  10. Clin Neurophysiol. 1999 Nov;110(11):1842-57 - PubMed
  11. Neuroimage. 2007 Feb 15;34(4):1600-11 - PubMed
  12. Clin Neurophysiol. 2013 May;124(5):837-50 - PubMed
  13. Methods Find Exp Clin Pharmacol. 2002;24 Suppl C:91-5 - PubMed
  14. Clin Neurophysiol. 2005 Oct;116(10):2266-301 - PubMed
  15. Biol Psychol. 1995 Jun;40(3):281-98 - PubMed
  16. Physiol Rev. 1988 Jul;68(3):649-742 - PubMed
  17. J Neurol Neurosurg Psychiatry. 1994 Apr;57(4):416-8 - PubMed
  18. Neurology. 1993 Feb;43(2):250-60 - PubMed
  19. Clin Neurophysiol. 2006 May;117(5):1000-8 - PubMed
  20. Brain. 2008 Mar;131(Pt 3):681-9 - PubMed
  21. Electroencephalogr Clin Neurophysiol. 1997 Mar;102(3):216-27 - PubMed
  22. Clin Neurophysiol. 2002 May;113(5):702-12 - PubMed
  23. Int J Psychophysiol. 1994 Oct;18(1):49-65 - PubMed
  24. Alzheimers Dement. 2011 Jul;7(4):367-85 - PubMed
  25. Lancet Neurol. 2014 Jun;13(6):614-29 - PubMed
  26. J Alzheimers Dis. 2010;19(3):859-71 - PubMed
  27. J Microbiol Methods. 2000 Dec 1;43(1):3-31 - PubMed
  28. Brain Res. 1991 Dec 13;567(1):111-9 - PubMed
  29. Lancet Neurol. 2010 Jan;9(1):119-28 - PubMed
  30. Acta Neurol Scand. 1998 Jan;97(1):13-9 - PubMed
  31. Dement Geriatr Cogn Disord. 1997 May-Jun;8(3):198-202 - PubMed
  32. Clin Neurophysiol. 2004 Jul;115(7):1490-505 - PubMed
  33. Int J Psychophysiol. 2016 May;103:88-102 - PubMed
  34. Clin Neurophysiol. 2000 Nov;111(11):1961-7 - PubMed
  35. Neurobiol Aging. 1995 May-Jun;16(3):271-8; discussion 278-84 - PubMed
  36. Electroencephalogr Clin Neurophysiol. 1988 Feb;69(2):110-7 - PubMed
  37. Biol Cybern. 1991;65(3):203-10 - PubMed
  38. Alzheimers Dement. 2011 May;7(3):263-9 - PubMed
  39. Eur Arch Psychiatry Clin Neurosci. 1999;249(6):288-90 - PubMed
  40. Neurobiol Aging. 2015 Feb;36(2):556-70 - PubMed
  41. Neuropsychobiology. 2003;48(3):152-9 - PubMed
  42. Dementia. 1996 Nov-Dec;7(6):314-23 - PubMed
  43. Front Neurosci. 2016 Feb 23;10:47 - PubMed
  44. J Psychiatr Res. 1975 Nov;12(3):189-98 - PubMed
  45. J Alzheimers Dis. 2011;26(2):331-46 - PubMed
  46. Lancet Neurol. 2007 Aug;6(8):734-46 - PubMed
  47. Clin EEG Neurosci. 2011 Jul;42(3):160-5 - PubMed
  48. J Alzheimers Dis. 2015 ;49(1):159-77 - PubMed
  49. Clin Neurophysiol. 2000 Oct;111(10 ):1817-24 - PubMed
  50. Cerebellum. 2003;2(2):82-3 - PubMed
  51. Brain Res Bull. 2005 Apr 30;65(4):309-16 - PubMed
  52. Neuroimage. 1995 Jun;2(2):89-101 - PubMed
  53. J Neurol Neurosurg Psychiatry. 2005 Dec;76 Suppl 5:v45-52 - PubMed
  54. Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3768-84 - PubMed
  55. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 - PubMed
  56. J Clin Neurophysiol. 1996 Nov;13(6):511-8 - PubMed
  57. Electroencephalogr Clin Neurophysiol. 1990 Nov;76(5):400-12 - PubMed
  58. Gerontologist. 1969 Autumn;9(3):179-86 - PubMed
  59. Electroencephalogr Clin Neurophysiol. 1986 Dec;64(6):483-92 - PubMed
  60. Alzheimers Dement. 2011 May;7(3):270-9 - PubMed
  61. Clin Neurophysiol. 2011 Nov;122(11):2169-76 - PubMed
  62. Clin EEG Neurosci. 2009 Apr;40(2):129-42 - PubMed
  63. Psychiatry Res. 1993 Oct;50(3):151-62 - PubMed
  64. Hum Brain Mapp. 2008 Dec;29(12):1355-67 - PubMed
  65. Br J Psychiatry. 1982 Jun;140:566-72 - PubMed
  66. PLoS One. 2011;6(11):e27863 - PubMed
  67. Neuroimage. 2004 May;22(1):57-67 - PubMed
  68. Hum Brain Mapp. 2011 Nov;32(11):1916-31 - PubMed
  69. Neuroimage. 2009 Jan 1;44(1):123-35 - PubMed
  70. Neurology. 1984 Jul;34(7):939-44 - PubMed
  71. J Psychiatr Res. 1982-1983;17(1):37-49 - PubMed
  72. Neurology. 2005 Dec 27;65(12):1863-72 - PubMed
  73. Clin Neurophysiol. 1999 May;110(5):825-32 - PubMed

Publication Types