Display options
Share it on

Front Mol Biosci. 2016 Dec 26;3:83. doi: 10.3389/fmolb.2016.00083. eCollection 2016.

Conformational Rigidity within Plasticity Promotes Differential Target Recognition of Nerve Growth Factor.

Frontiers in molecular biosciences

Francesca Paoletti, Cesira de Chiara, Geoff Kelly, Sonia Covaceuszach, Francesca Malerba, Robert Yan, Doriano Lamba, Antonino Cattaneo, Annalisa Pastore

Affiliations

  1. Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy.
  2. The Francis Crick Institute London, UK.
  3. Medical Research Council (MRC) Biomedical NMR Centre, The Francis Crick Institute London, UK.
  4. Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Basovizza Trieste, Italy.
  5. Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College London London, UK.
  6. Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College LondonLondon, UK; Molecular Medicine Department, University of PaviaPavia, Italy.

PMID: 28083536 PMCID: PMC5183593 DOI: 10.3389/fmolb.2016.00083

Abstract

Nerve Growth Factor (NGF), the prototype of the neurotrophin family, is essential for maintenance and growth of different neuronal populations. The X-ray crystal structure of NGF has been known since the early '90s and shows a β-sandwich fold with extensive loops that are involved in the interaction with its binding partners. Understanding the dynamical properties of these loops is thus important for molecular recognition. We present here a combined solution NMR/molecular dynamics study which addresses the question of whether and how much the long loops of NGF are flexible and describes the N-terminal intrinsic conformational tendency of the unbound NGF molecule. NMR titration experiments allowed identification of a previously undetected epitope of the anti-NGF antagonist antibody αD11 which will be of crucial importance for future drug lead discovery. The present study thus recapitulates all the available structural information and unveils the conformational versatility of the relatively rigid NGF loops upon functional ligand binding.

Keywords: NGF; NMR; antibody recognition; neurodegeneration; neurotrophins; structure

References

  1. Protein Eng. 1991 Jun;4(5):519-29 - PubMed
  2. Nature. 1991 Dec 5;354(6352):411-4 - PubMed
  3. Biomed Res Int. 2015;2015:571456 - PubMed
  4. MAbs. 2014 Jul-Aug;6(4):1059-68 - PubMed
  5. J Biol Chem. 1995 Mar 17;270(11):6278-85 - PubMed
  6. J Biomol NMR. 1995 Nov;6(3):277-93 - PubMed
  7. Biophys J. 2006 Sep 15;91(6):2063-71 - PubMed
  8. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):619-33 - PubMed
  9. Science. 2004 May 7;304(5672):870-5 - PubMed
  10. J Neurochem. 1988 Apr;50(4):1003-10 - PubMed
  11. Protein Sci. 1999 Dec;8(12 ):2589-97 - PubMed
  12. Science. 1987 Sep 4;237(4819):1154-62 - PubMed
  13. Handb Exp Pharmacol. 2014;220:17-32 - PubMed
  14. Acta Crystallogr F Struct Biol Commun. 2015 Jul;71(Pt 7):906-12 - PubMed
  15. J Mol Biol. 1994 Jun 10;239(3):385-400 - PubMed
  16. Neuron. 2007 Jan 4;53(1):25-38 - PubMed
  17. Drugs. 2014 Apr;74(6):619-26 - PubMed
  18. J Mol Biol. 2010 Mar 5;396(4):967-84 - PubMed
  19. Cell Death Differ. 2013 Aug;20(8):1017-30 - PubMed
  20. Proteins. 2009 Jun;75(4):990-1009 - PubMed
  21. Biophys J. 2015 Feb 3;108(3):687-97 - PubMed
  22. J Neurosci Res. 2001 Jan 1;63(1):10-9 - PubMed
  23. Biophys J. 2003 Apr;84(4):2282-92 - PubMed
  24. ACS Chem Neurosci. 2015 Aug 19;6(8):1379-92 - PubMed
  25. J Mol Biol. 2008 Sep 12;381(4):881-96 - PubMed
  26. PLoS One. 2011;6(7):e22615 - PubMed
  27. J Biomol NMR. 2009 Aug;44(4):213-23 - PubMed
  28. PLoS One. 2014 Mar 06;9(3):e89617 - PubMed
  29. Eur J Neurosci. 2014 Feb;39(3):392-400 - PubMed
  30. J Biomol NMR. 1996 Dec;8(4):477-86 - PubMed
  31. Biochemistry. 1998 Dec 1;37(48):16846-52 - PubMed
  32. Nature. 1999 Sep 9;401(6749):184-8 - PubMed
  33. CNS Neurol Disord Drug Targets. 2011 Aug;10(5):635-47 - PubMed
  34. FASEB J. 2012 Sep;26(9):3811-21 - PubMed
  35. J Neurosci. 2008 Mar 12;28(11):2698-709 - PubMed
  36. Structure. 2015 Jul 7;23(7):1293-304 - PubMed
  37. Bioinformatics. 2007 Feb 1;23(3):381-2 - PubMed
  38. Structure. 2001 Dec;9(12 ):1191-9 - PubMed
  39. PLoS One. 2012;7(3):e32212 - PubMed
  40. Nature. 2008 Aug 7;454(7205):789-93 - PubMed
  41. J Biol Chem. 1992 Nov 15;267(32):22707-10 - PubMed
  42. Biophys J. 2010 Oct 6;99(7):2273-8 - PubMed
  43. Neurobiol Dis. 2017 Jan;97(Pt B):127-138 - PubMed
  44. J Chem Theory Comput. 2008 Mar;4(3):435-47 - PubMed

Publication Types

Grant support