Display options
Share it on

Front Neurol. 2017 Jan 26;8:12. doi: 10.3389/fneur.2017.00012. eCollection 2017.

Disrupted Saccade Control in Chronic Cerebral Injury: Upper Motor Neuron-Like Disinhibition in the Ocular Motor System.

Frontiers in neurology

John-Ross Rizzo, Todd E Hudson, Andrew Abdou, Yvonne W Lui, Janet C Rucker, Preeti Raghavan, Michael S Landy

Affiliations

  1. Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA; Department of Neurology, New York University Langone Medical Center, New York, NY, USA.
  2. Rutgers School of Biomedical and Health Sciences , New Brunswick, NJ , USA.
  3. Department of Radiology, New York University Langone Medical Center , New York, NY , USA.
  4. Department of Neurology, New York University Langone Medical Center , New York, NY , USA.
  5. Department of Rehabilitation Medicine, New York University Langone Medical Center , New York, NY , USA.
  6. Department of Psychology and Center for Neural Science, New York University , New York, NY , USA.

PMID: 28184211 PMCID: PMC5266728 DOI: 10.3389/fneur.2017.00012

Abstract

Saccades rapidly direct the line of sight to targets of interest to make use of the high acuity foveal region of the retina. These fast eye movements are instrumental for scanning visual scenes, foveating targets, and, ultimately, serve to guide manual motor control, including eye-hand coordination. Cerebral injury has long been known to impair ocular motor control. Recently, it has been suggested that alterations in control may be useful as a marker for recovery. We measured eye movement control in a saccade task in subjects with chronic middle cerebral artery stroke with both cortical and substantial basal ganglia involvement and in healthy controls. Saccade latency distributions were bimodal, with an early peak at 60 ms (anticipatory saccades) and a later peak at 250 ms (regular saccades). Although the latencies corresponding to these peaks were the same in the two groups, there were clear differences in the size of the peaks. Classifying saccade latencies relative to the saccade "go signal" into anticipatory (latencies up to 80 ms), "early" (latencies between 80 and 160 ms), and "regular" types (latencies longer than 160 ms), stroke subjects displayed a disproportionate number of anticipatory saccades, whereas control subjects produced the majority of their saccades in the regular range. We suggest that this increase in the number of anticipatory saccade events may result from a disinhibition phenomenon that manifests as an impairment in the endogenous control of ocular motor events (saccades) and interleaved fixations. These preliminary findings may help shed light on the ocular motor deficits of neurodegenerative conditions, results that may be subclinical to an examiner, but clinically significant secondary to their functional implications.

Keywords: cortex; disinhibition; latency; saccades; stroke

References

  1. J Neurophysiol. 2010 Feb;103(2):801-16 - PubMed
  2. Phys Ther. 1993 Jul;73(7):447-54 - PubMed
  3. J Neurosci. 2014 Mar 5;34(10):3687-98 - PubMed
  4. J Autism Dev Disord. 1994 Aug;24(4):413-31 - PubMed
  5. J Neurophysiol. 2012 Nov;108(10):2708-16 - PubMed
  6. Clin Neuropsychol. 2003 Nov;17(4):544-50 - PubMed
  7. J Neurophysiol. 1981 Oct;46(4):755-72 - PubMed
  8. J Neurophysiol. 2001 Oct;86(4):1916-36 - PubMed
  9. PLoS One. 2009 Sep 15;4(9):e7004 - PubMed
  10. Ergonomics. 2009 Apr;52(4):474-83 - PubMed
  11. Stroke. 1988 May;19(5):604-7 - PubMed
  12. Brain. 2000 May;123 ( Pt 5):940-53 - PubMed
  13. Neuron. 2009 Jul 30;63(2):244-53 - PubMed
  14. Physiol Rev. 2000 Jul;80(3):953-78 - PubMed
  15. Neuropsychology. 2004 Jan;18(1):115-23 - PubMed
  16. Annu Rev Med. 2009;60:55-68 - PubMed
  17. Cogn Process. 2014 Aug;15(3):415-22 - PubMed
  18. Ophthalmology. 1985 Jan;92(1):77-82 - PubMed
  19. Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1281):331-8; discussion 338-9 - PubMed
  20. J Am Optom Assoc. 1999 May;70(5):301-8 - PubMed
  21. Percept Mot Skills. 1977 Dec;45(3 Pt 1):981-2 - PubMed
  22. J Vis. 2003;3(1):49-63 - PubMed
  23. J Neurophysiol. 1992 Apr;67(4):1000-2 - PubMed
  24. Ann N Y Acad Sci. 2002 Apr;956:409-13 - PubMed
  25. J Neurophysiol. 1983 May;49(5):1254-67 - PubMed
  26. J Neurophysiol. 1977 Mar;40(2):362-89 - PubMed
  27. Brain. 1992 Oct;115 ( Pt 5):1359-86 - PubMed
  28. Prog Brain Res. 2003;142:3-17 - PubMed
  29. J Sports Sci. 2002 Mar;20(3):279-87 - PubMed
  30. Top Stroke Rehabil. 2008 Jan-Feb;15(1):27-36 - PubMed
  31. Stroke. 1990 May;21(5):731-9 - PubMed
  32. Med Law. 2010 Dec;29(4):565-91 - PubMed
  33. Br J Clin Pharmacol. 2004 Jun;57(6):695-713 - PubMed
  34. Physiol Rep. 2015 Dec;3(12):null - PubMed
  35. J Neurophysiol. 2013 Jul;110(2):334-43 - PubMed
  36. J Neurosci. 2010 May 12;30(19):6527-37 - PubMed
  37. J Sports Med Phys Fitness. 2010 Mar;50(1):99-108 - PubMed
  38. Curr Opin Neurobiol. 2010 Dec;20(6):717-25 - PubMed
  39. J Neurosci. 2011 Jul 20;31(29):10627-39 - PubMed
  40. J Exp Psychol Hum Percept Perform. 1989 Aug;15(3):529-43 - PubMed
  41. Rev Neurol (Paris). 2012 Oct;168(10):734-40 - PubMed
  42. Am J Occup Ther. 1982 May;36(5):314-21 - PubMed
  43. Neurology. 1980 May;30(5):509-17 - PubMed
  44. Biol Cybern. 2006 Jul;95(1):21-9 - PubMed
  45. Psychophysiology. 2001 Mar;38(2):179-89 - PubMed
  46. J Neurophysiol. 1987 Dec;58(6):1387-419 - PubMed
  47. Brain. 2006 Jun;129(Pt 6):1415-25 - PubMed
  48. J Neurophysiol. 1998 Dec;80(6):2900-10 - PubMed
  49. J Clin Exp Neuropsychol. 1986 Jan;8(1):93-101 - PubMed
  50. J Neurosci. 2014 Jun 25;34(26):8918-29 - PubMed
  51. Nature. 2005 Feb 24;433(7028):873-6 - PubMed
  52. J Neurophysiol. 2014 Feb;111(4):804-16 - PubMed
  53. J Sports Sci. 2000 Sep;18(9):737-50 - PubMed
  54. Doc Ophthalmol. 1994;85(3):267-74 - PubMed
  55. J Am Optom Assoc. 1971 Jan;42(1):89-90 - PubMed
  56. J Vis. 2011 Jan 07;11(1):9 - PubMed
  57. J Neurosci. 2011 Feb 16;31(7):2399-412 - PubMed
  58. J Neurophysiol. 1991 Aug;66(2):530-58 - PubMed
  59. Nature. 1995 Sep 7;377(6544):59-62 - PubMed
  60. Ergonomics. 2005 Sep 15-Nov 15;48(11-14):1686-97 - PubMed
  61. Brain Res. 2009 Aug 11;1284:77-88 - PubMed
  62. Exp Brain Res. 1992;89(3):571-80 - PubMed
  63. Psychopharmacol Bull. 1988;24(4):689-92 - PubMed
  64. J Cogn Neurosci. 2010 Sep;22(9):1931-43 - PubMed
  65. Curr Biol. 2000 Apr 20;10(8):R291-3 - PubMed
  66. Behav Brain Res. 2011 May 16;219(1):39-46 - PubMed
  67. Scand J Rehabil Med. 1975;7(1):13-31 - PubMed
  68. Exp Brain Res. 1991;83(3):607-17 - PubMed
  69. Vision Res. 2000;40(20):2763-77 - PubMed
  70. J Neurol Neurosurg Psychiatry. 2013 Mar;84(3):242 - PubMed
  71. Percept Mot Skills. 1982 Jun;54(3 Pt 2):1227-30 - PubMed
  72. Eur Neurol. 1994;34(3):121-34 - PubMed
  73. J Neurol Neurosurg Psychiatry. 2013 Mar;84(3):337-41 - PubMed
  74. Brain Cogn. 2008 Dec;68(3):327-40 - PubMed
  75. PLoS One. 2010 Feb 19;5(2):e9308 - PubMed
  76. J Neurophysiol. 2009 Nov;102(5):2681-92 - PubMed
  77. J Neurophysiol. 2000 Mar;83(3):1283-99 - PubMed
  78. Ann N Y Acad Sci. 2002 Apr;956:216-29 - PubMed
  79. Exp Brain Res. 2014 Jan;232(1):211-23 - PubMed

Publication Types

Grant support