Display options
Share it on

Biotechnol Biofuels. 2017 Feb 02;10:29. doi: 10.1186/s13068-017-0715-2. eCollection 2017.

Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides.

Biotechnology for biofuels

Andrew Care, Kerstin Petroll, Emily S Y Gibson, Peter L Bergquist, Anwar Sunna

Affiliations

  1. Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
  2. ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, Australia.
  3. Department of Molecular Medicine & Pathology, Medical School, University of Auckland, Auckland, New Zealand.
  4. Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia.

PMID: 28184244 PMCID: PMC5289021 DOI: 10.1186/s13068-017-0715-2

Abstract

BACKGROUND: Solid-binding peptides (SBPs) bind strongly to a diverse range of solid materials without the need for any chemical reactions. They have been used mainly for the functionalisation of nanomaterials but little is known about their use for the immobilisation of thermostable enzymes and their feasibility in industrial-scale biocatalysis.

RESULTS: A silica-binding SBP sequence was fused genetically to three thermostable hemicellulases. The resulting enzymes were active after fusion and exhibited identical pH and temperature optima but differing thermostabilities when compared to their corresponding unmodified enzymes. The silica-binding peptide mediated the efficient immobilisation of each enzyme onto zeolite, demonstrating the construction of single enzyme biocatalytic modules. Cross-linked enzyme aggregates (CLEAs) of enzyme preparations either with or without zeolite immobilisation displayed greater activity retention during enzyme recycling than those of free enzymes (without silica-binding peptide) or zeolite-bound enzymes without any crosslinking. CLEA preparations comprising all three enzymes simultaneously immobilised onto zeolite enabled the formation of multiple enzyme biocatalytic modules which were shown to degrade several hemicellulosic substrates.

CONCLUSIONS: The current work introduced the construction of functional biocatalytic modules for the hydrolysis of simple and complex polysaccharides. This technology exploited a silica-binding SBP to mediate effectively the rapid and simple immobilisation of thermostable enzymes onto readily-available and inexpensive silica-based matrices. A conceptual application of biocatalytic modules consisting of single or multiple enzymes was validated by hydrolysing various hemicellulosic polysaccharides.

Keywords: Biocatalytic modules; CLEAs; Enzyme immobilisation; Solid-binding peptide; Thermostable enzymes

References

  1. Curr Microbiol. 1999 Dec;39(6):351-0357 - PubMed
  2. Org Lett. 2000 May 18;2(10):1361-4 - PubMed
  3. Appl Microbiol Biotechnol. 2004 Jun;64(6):816-22 - PubMed
  4. Biopolymers. 2008;90(3):450-8 - PubMed
  5. Int J Biol Macromol. 2008 Oct 1;43(3):314-9 - PubMed
  6. Annu Rev Plant Biol. 2009;60:165-82 - PubMed
  7. Chem Soc Rev. 2009 Feb;38(2):453-68 - PubMed
  8. Biotechnol Bioeng. 2009 Jul 1;103(4):696-705 - PubMed
  9. J Biosci Bioeng. 2009 Jul;108(1):36-40 - PubMed
  10. Appl Biochem Biotechnol. 2010 May;161(1-8):301-12 - PubMed
  11. Protein Pept Lett. 2010 Nov;17(11):1412-6 - PubMed
  12. Bioresour Technol. 2011 Jun;102(11):6593-9 - PubMed
  13. Nanoscale. 2011 Jul;3(7):2950-6 - PubMed
  14. Appl Microbiol Biotechnol. 2011 Nov;92(3):467-77 - PubMed
  15. Chem Commun (Camb). 2012 Jan 21;48(6):886-8 - PubMed
  16. Bioresour Technol. 2012 Nov;123:542-7 - PubMed
  17. Adv Biochem Eng Biotechnol. 2013;131:89-119 - PubMed
  18. N Biotechnol. 2013 Jun 25;30(5):485-92 - PubMed
  19. Biotechnol J. 2013 Feb;8(2):262-72 - PubMed
  20. Chem Soc Rev. 2013 Aug 7;42(15):6223-35 - PubMed
  21. Parasitol Res. 2013 Jul;112(7):2441-52 - PubMed
  22. Crit Rev Biotechnol. 2015 Mar;35(1):15-28 - PubMed
  23. ACS Nano. 2013 Nov 26;7(11):9632-46 - PubMed
  24. Enzyme Microb Technol. 2014 Jan 10;54:20-4 - PubMed
  25. Enzyme Microb Technol. 2014 Jul-Aug;61-62:17-27 - PubMed
  26. PeerJ. 2014 Jun 10;2:e402 - PubMed
  27. Appl Biochem Biotechnol. 2014 Aug;173(8):2225-40 - PubMed
  28. Langmuir. 2015;31(1):397-403 - PubMed
  29. Trends Biotechnol. 2015 May;33(5):259-68 - PubMed
  30. Biotechnol Biotechnol Equip. 2015 Mar 4;29(2):205-220 - PubMed
  31. ACS Appl Mater Interfaces. 2016 May 18;8(19):11945-53 - PubMed
  32. Bioresour Technol. 2016 Nov;219:725-737 - PubMed
  33. 3 Biotech. 2013 Feb;3(1):1-9 - PubMed
  34. Gene. 1987;52(2-3):279-83 - PubMed
  35. Appl Environ Microbiol. 1998 May;64(5):1759-65 - PubMed

Publication Types