Display options
Share it on

Front Chem. 2017 Jan 26;5:4. doi: 10.3389/fchem.2017.00004. eCollection 2017.

Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease.

Frontiers in chemistry

Bernardo A Petriz, Octávio L Franco

Affiliations

  1. Department of Health, Molecular and Physiologic Adaptations to Exercise, Centro Universitário do Distrito Federal Brasília, Brazil.
  2. S-Inova Biotech, Universidade Católica Dom Bosco Campo Grande, Brazil.

PMID: 28184370 PMCID: PMC5266679 DOI: 10.3389/fchem.2017.00004

Abstract

Classic studies on phylotype profiling are limited to the identification of microbial constituents, where information is lacking about the molecular interaction of these bacterial communities with the host genome and the possible outcomes in host biology. A range of OMICs approaches have provided great progress linking the microbiota to health and disease. However, the investigation of this context through proteomic mass spectrometry-based tools is still being improved. Therefore, metaproteomics or community proteogenomics has emerged as a complementary approach to metagenomic data, as a field in proteomics aiming to perform large-scale characterization of proteins from environmental microbiota, such as the human gut. The advances in molecular separation methods coupled with mass spectrometry (e.g., LC-MS/MS) and proteome bioinformatics have been fundamental in these novel large-scale metaproteomic studies, which have further been performed in a wide range of samples including soil, plant and human environments. Metaproteomic studies will make major progress if a comprehensive database covering the genes and expresses proteins from all gut microbial species is developed. To this end, we here present some of the main limitations of metaproteomic studies in complex microbiota environments, such as the gut, also addressing the up-to-date pipelines in sample preparation prior to fractionation/separation and mass spectrometry analysis. In addition, a novel approach to the limitations of metagenomic databases is also discussed. Finally, prospects are addressed regarding the application of metaproteomic analysis using a unified host-microbiome gene database and other meta-OMICs platforms.

Keywords: LC-MS/MS; OMICS; fecal metaproteome; gut microbiota; mass spectrometry based proteomics; metabolomics; microbiota genome catalog

References

  1. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1128-33 - PubMed
  2. Sci Rep. 2016 May 10;6:25773 - PubMed
  3. Expert Rev Proteomics. 2016 Jun;13(6):535-7 - PubMed
  4. Microbiome. 2016 Jun 24;4(1):31 - PubMed
  5. Nature. 2015 Dec 10;528(7581):262-6 - PubMed
  6. Mol Cell Proteomics. 2004 Apr;3(4):367-78 - PubMed
  7. J Biol Chem. 2015 Feb 27;290(9):5647-60 - PubMed
  8. Proteomics. 2015 Oct;15(20):3596-601 - PubMed
  9. Nat Med. 2012 Aug;18(8):1188-9 - PubMed
  10. Science. 2013 Sep 6;341(6150):1241214 - PubMed
  11. Nature. 2006 Dec 21;444(7122):1027-31 - PubMed
  12. Inflamm Bowel Dis. 2012 Mar;18(3):409-17 - PubMed
  13. BMC Genomics. 2016 Aug 16;17(1):642 - PubMed
  14. J Proteome Res. 2015 Jan 2;14(1):133-41 - PubMed
  15. Gut. 2012 Apr;61(4):543-53 - PubMed
  16. PLoS One. 2012;7(11):e49138 - PubMed
  17. J Proteomics. 2015 Jan 15;113:351-65 - PubMed
  18. Int J Med Microbiol. 2016 Aug;306(5):266-79 - PubMed
  19. Nat Rev Immunol. 2009 May;9(5):313-23 - PubMed
  20. Atherosclerosis. 2013 Dec;231(2):456-61 - PubMed
  21. Nat Rev Nephrol. 2016 Mar;12(3):169-81 - PubMed
  22. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9973-7 - PubMed
  23. Proteomics. 2015 Oct;15(20):3424-38 - PubMed
  24. Microbiome. 2013 May 03;1(1):14 - PubMed
  25. BMC Genomics. 2014 Jun 21;15:511 - PubMed
  26. PLoS One. 2013 Dec 09;8(12):e82981 - PubMed
  27. Mol Cell Proteomics. 2013 Nov;12(11):3310-8 - PubMed
  28. Gut. 2012 Jul;61(7):1007-15 - PubMed
  29. Proteomics. 2005 Apr;5(6):1714-28 - PubMed
  30. Nature. 2006 Dec 21;444(7122):1022-3 - PubMed
  31. Environ Microbiol. 2004 Sep;6(9):911-20 - PubMed
  32. Curr Diab Rep. 2015 Sep;15(9):63 - PubMed
  33. Nat Protoc. 2009;4(2):256-69 - PubMed
  34. Nat Biotechnol. 2014 Aug;32(8):834-41 - PubMed
  35. PLoS One. 2011;6(11):e26542 - PubMed
  36. Nature. 2003 Mar 13;422(6928):198-207 - PubMed
  37. Microbiome. 2014 Dec 10;2(1):49 - PubMed
  38. Front Microbiol. 2015 Oct 27;6:1151 - PubMed
  39. Biomed Chromatogr. 2016 Jan;30(1):7-12 - PubMed
  40. J Clin Invest. 2014 Oct;124(10):4204-11 - PubMed
  41. Proteomics Clin Appl. 2016 Apr;10 (4):358-70 - PubMed
  42. Genome Res. 2013 Jan;23(1):111-20 - PubMed
  43. Proteomics. 2015 Oct;15(20):3409-17 - PubMed
  44. J Gastroenterol. 2015 Feb;50(2):167-79 - PubMed
  45. ISME J. 2009 Feb;3(2):179-89 - PubMed
  46. PLoS One. 2012;7(1):e29913 - PubMed
  47. Proteomics. 2010 Feb;10 (4):785-98 - PubMed
  48. Physiol Genomics. 2015 Jun;47(6):187-97 - PubMed
  49. Methods Mol Biol. 2016;1410:293-304 - PubMed
  50. Nat Biotechnol. 2015 Oct;33(10):1103-8 - PubMed
  51. PLoS One. 2015 Oct 19;10(10):e0140827 - PubMed
  52. Proteomics. 2013 Apr;13(8):1352-7 - PubMed

Publication Types