Display options
Share it on

AMB Express. 2017 Dec;7(1):5. doi: 10.1186/s13568-016-0308-7. Epub 2017 Jan 03.

Xylanases of Cellulomonas flavigena: expression, biochemical characterization, and biotechnological potential.

AMB Express

Alexander V Lisov, Oksana V Belova, Zoya A Lisova, Nataliy G Vinokurova, Alexey S Nagel, Zhanna I Andreeva-Kovalevskaya, Zhanna I Budarina, Maxim O Nagornykh, Marina V Zakharova, Andrey M Shadrin, Alexander S Solonin, Alexey A Leontievsky

Affiliations

  1. G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPM RAS), 5 Prospekt Nauki, Pushchino, Moscow Region, 142290, Russia. [email protected].
  2. G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPM RAS), 5 Prospekt Nauki, Pushchino, Moscow Region, 142290, Russia.
  3. Pushchino State Institute of Life Sciences, 3 Prospekt Nauki, Pushchino, Moscow Region, 142290, Russia.

PMID: 28050845 PMCID: PMC5209306 DOI: 10.1186/s13568-016-0308-7

Abstract

Four xylanases of Cellulomonas flavigena were cloned, expressed in Escherichia coli and purified. Three enzymes (CFXyl1, CFXyl2, and CFXyl4) were from the GH10 family, while CFXyl3 was from the GH11 family. The enzymes possessed moderate temperature stability and a neutral pH optimum. The enzymes were more stable at alkaline pH values. CFXyl1 and CFXyl2 hydrolyzed xylan to form xylobiose, xylotriose, xylohexaose, xylopentaose, and xylose, which is typical for GH10. CFXyl3 (GH11) and CFXyl4 (GH10) formed the same xylooligosaccharides, but xylose was formed in small amounts. The xylanases made efficient saccharification of rye, wheat and oat, common components of animal feed, which indicates their high biotechnological potential.

Keywords: Cellulomonas flavigena; Saccharification of cereals; Xylanases; Xylooligosaccharides

References

  1. J Biotechnol. 2006 Sep 1;125(2):198-209 - PubMed
  2. Crit Rev Biotechnol. 2002;22(1):33-64 - PubMed
  3. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  4. Appl Microbiol Biotechnol. 2007 Dec;77(3):589-95 - PubMed
  5. J Biotechnol. 1997 Sep 16;57(1-3):151-66 - PubMed
  6. Crit Rev Biotechnol. 2010 Sep;30(3):176-91 - PubMed
  7. J Ind Microbiol Biotechnol. 2007 Apr;34(4):331-8 - PubMed
  8. J Agric Food Chem. 2010 Sep 8;58(17):9362-71 - PubMed
  9. J Microbiol Biotechnol. 2009 Mar;19(3):277-85 - PubMed
  10. Br Poult Sci. 2010 Oct;51(5):639-47 - PubMed
  11. Annu Rev Plant Biol. 2010;61:263-89 - PubMed
  12. Biochem J. 2004 Sep 15;382(Pt 3):769-81 - PubMed
  13. J Biol Chem. 2005 Oct 21;280(42):35126-35 - PubMed
  14. Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38 - PubMed
  15. Curr Microbiol. 1997 May;34(5):273-9 - PubMed
  16. Bioresour Technol. 2010 Jul;101(14):5539-45 - PubMed
  17. Br J Nutr. 2010 May;103(10):1507-13 - PubMed
  18. Bioresour Technol. 2010 Jan;101(2):688-95 - PubMed
  19. J Appl Microbiol. 2012 Mar;112(3):455-63 - PubMed
  20. Proteins. 2010 Sep;78(12):2699-706 - PubMed
  21. Enzyme Microb Technol. 2010 May 5;46(6):506-12 - PubMed
  22. Anal Biochem. 1962 Nov;4:358-77 - PubMed
  23. Curr Microbiol. 2008 Jul;57(1):39-44 - PubMed
  24. Stand Genomic Sci. 2015 Nov 18;10:104 - PubMed
  25. World J Microbiol Biotechnol. 2014 Mar;30(3):801-8 - PubMed
  26. Stand Genomic Sci. 2010 Jul 29;3(1):15-25 - PubMed

Publication Types