Display options
Share it on

Biophys J. 2017 Jan 24;112(2):339-345. doi: 10.1016/j.bpj.2016.12.023.

Undulations Drive Domain Registration from the Two Membrane Leaflets.

Biophysical journal

Timur R Galimzyanov, Peter I Kuzmin, Peter Pohl, Sergey A Akimov

Affiliations

  1. Laboratory of Bioelectrochemistry, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", Moscow, Russia.
  2. Laboratory of Bioelectrochemistry, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
  3. Department of Molecular and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
  4. Laboratory of Bioelectrochemistry, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", Moscow, Russia. Electronic address: [email protected].

PMID: 28122219 PMCID: PMC5266264 DOI: 10.1016/j.bpj.2016.12.023

Abstract

Phase separation in biological membranes plays an important role in protein targeting and transmembrane signaling. Its occurrence in both membrane leaflets commonly gives rise to matching liquid or liquid-ordered domains in the opposing monolayers. The underlying mechanism of such co-localization is not fully understood. The decrease of the line tension around the thicker ordered domain constitutes an important driving force. Yet, robust domain coupling requires an additional energy source, which we have now identified as thermal undulations. Our theoretical analysis of elastic deformations in a lipid bilayer shows that stiffer lipid domains tend to distribute into areas with lower fluctuations of monolayer curvature. These areas naturally align in the opposing monolayers. Thus, coupling requires both membrane leafs to display a heterogeneity in splay rigidities. The heterogeneity may either originate from intrinsic lipid properties or be acquired by adsorption of peripheral molecules. Undulations and line tension act synergistically: the gain in energy due a minimized line tension is proportional to domain radius and thus primarily fuels the registration of smaller domains; whereas the energetic contribution of undulations increases with membrane area and thus primarily acts to coalesce larger domains.

Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

References

  1. Biophys J. 2005 Aug;89(2):1067-80 - PubMed
  2. Biophys J. 2003 Nov;85(5):3074-83 - PubMed
  3. J Biol Chem. 2012 Dec 14;287(51):42495-501 - PubMed
  4. Biophys J. 2000 Jul;79(1):328-39 - PubMed
  5. Nature. 2003 Oct 23;425(6960):821-4 - PubMed
  6. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18992-7 - PubMed
  7. Biophys J. 1999 Nov;77(5):2638-42 - PubMed
  8. Biophys J. 2004 May;86(5):2942-50 - PubMed
  9. Biophys J. 2000 Jul;79(1):426-33 - PubMed
  10. Phys Rev Lett. 2013 Jun 28;110(26):268101 - PubMed
  11. Biophys J. 2015 Apr 21;108(8):1963-76 - PubMed
  12. Biophys J. 2009 Apr 8;96(7):2689-95 - PubMed
  13. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72 - PubMed
  14. Biophys J. 2008 Apr 1;94(7):2654-66 - PubMed
  15. Biochim Biophys Acta. 2010 Jul;1798(7):1377-91 - PubMed
  16. Nature. 1997 Jun 5;387(6633):569-72 - PubMed
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021931 - PubMed
  18. J Lipid Res. 2010 Jul;51(7):1810-22 - PubMed
  19. Nat Nanotechnol. 2016 Nov 14;:null - PubMed
  20. Curr Biol. 2000 Apr 6;10(7):393-6 - PubMed
  21. Biophys J. 2003 Oct;85(4):2342-50 - PubMed
  22. Biophys J. 2015 Jun 16;108(12):2833-42 - PubMed
  23. Phys Rev Lett. 2015 Aug 21;115(8):088101 - PubMed
  24. J Am Chem Soc. 2011 May 4;133(17):6563-77 - PubMed
  25. Phys Rev Lett. 2016 Feb 19;116(7):079801 - PubMed
  26. Phys Rev Lett. 2016 Feb 19;116(7):079802 - PubMed
  27. Soft Matter. 2015 Dec 14;11(46):8948-59 - PubMed
  28. Nat Mater. 2012 Dec;11(12):1074-80 - PubMed
  29. PLoS One. 2012;7(12):e52839 - PubMed
  30. Biophys J. 2015 Dec 1;109 (11):2317-27 - PubMed
  31. Biochim Biophys Acta. 2010 Apr;1798(4):750-65 - PubMed
  32. Langmuir. 2016 Feb 16;32(6):1591-600 - PubMed
  33. Biophys J. 2007 Feb 15;92(4):1263-70 - PubMed
  34. Z Naturforsch C. 1973 Nov-Dec;28(11):693-703 - PubMed
  35. Biophys J. 1997 Jul;73(1):245-57 - PubMed
  36. Neurochem Res. 2002 Aug;27(7-8):761-70 - PubMed

MeSH terms

Publication Types