Display options
Share it on

Cancer Metab. 2017 Jan 30;5:2. doi: 10.1186/s40170-017-0164-1. eCollection 2017.

Mitochondrial mutations and metabolic adaptation in pancreatic cancer.

Cancer & metabolism

Rae-Anne Hardie, Ellen van Dam, Mark Cowley, Ting-Li Han, Seher Balaban, Marina Pajic, Mark Pinese, Mary Iconomou, Robert F Shearer, Jessie McKenna, David Miller, Nicola Waddell, John V Pearson, Sean M Grimmond, Leonid Sazanov, Andrew V Biankin, Silas Villas-Boas, Andrew J Hoy, Nigel Turner, Darren N Saunders

Affiliations

  1. The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia.
  2. St Vincent's Clinical School, University of New South Wales, Sydney, NSW Australia.
  3. School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand.
  4. Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006 Australia.
  5. Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia.
  6. Mitochondrial Biology Unit, Wellcome Trust, Cambridge, CB2 0XY UK.
  7. Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
  8. Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW 2006 Australia.
  9. School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia.

PMID: 28163917 PMCID: PMC5282905 DOI: 10.1186/s40170-017-0164-1

Abstract

BACKGROUND: Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited.

METHODS: We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing.

RESULTS: We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours.

CONCLUSIONS: The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.

Keywords: Genome; Glutamine; Lipid; Metabolomics; Mitochondria; Pancreas

References

  1. Science. 2010 Sep 17;329(5998):1492-9 - PubMed
  2. Drug Discov Today. 2012 Mar;17(5-6):232-41 - PubMed
  3. Cell Rep. 2014 Jun 12;7(5):1679-90 - PubMed
  4. Nature. 2016 Mar 3;531(7592):110-3 - PubMed
  5. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D611-3 - PubMed
  6. Mol Biol Evol. 2007 Mar;24(3):757-68 - PubMed
  7. Ann N Y Acad Sci. 2005 May;1042:109-22 - PubMed
  8. Sci Transl Med. 2012 Jan 25;4(118):118ra10 - PubMed
  9. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13045-50 - PubMed
  10. Clin Cancer Res. 2006 Aug 1;12(15):4652-61 - PubMed
  11. Nat Commun. 2016 Oct 10;7:13041 - PubMed
  12. Cell. 2007 Sep 21;130(6):986-8 - PubMed
  13. Cancer Res. 2015 Feb 1;75(3):544-53 - PubMed
  14. Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):null - PubMed
  15. PLoS One. 2009 Sep 15;4(9):e7033 - PubMed
  16. Ann N Y Acad Sci. 2010 Jul;1201:137-46 - PubMed
  17. Cell Cycle. 2012 Apr 1;11(7):1445-54 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4129-34 - PubMed
  19. Nature. 2011 Aug 18;476(7360):346-50 - PubMed
  20. Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36 - PubMed
  21. Nature. 2010 Apr 15;464(7291):993-8 - PubMed
  22. Nature. 2013 Feb 28;494(7438):443-8 - PubMed
  23. Oncogene. 2006 Aug 7;25(34):4768-76 - PubMed
  24. Cancer Res. 2013 Jul 15;73(14):4429-38 - PubMed
  25. Cancer Res. 1994 Jul 15;54(14):3889-96 - PubMed
  26. Cold Spring Harb Symp Quant Biol. 2011;76:325-34 - PubMed
  27. Genes Dev. 2006 May 15;20(10):1218-49 - PubMed
  28. Semin Cancer Biol. 2009 Feb;19(1):4-11 - PubMed
  29. J Biol Chem. 2001 Mar 23;276(12):8892-7 - PubMed
  30. PLoS One. 2011;6(5):e20151 - PubMed
  31. Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84 - PubMed
  32. Am J Pathol. 2000 Nov;157(5):1623-31 - PubMed
  33. Nature. 2012 Nov 15;491(7424):399-405 - PubMed
  34. Nat Rev Cancer. 2016 Sep;16(9):553-65 - PubMed
  35. Nature. 2013 Jul 4;499(7456):43-9 - PubMed
  36. Nat Protoc. 2010 Sep;5(10):1709-29 - PubMed
  37. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14087-91 - PubMed
  38. Genes Dev. 2016 Feb 15;30(4):355-85 - PubMed
  39. Cell Rep. 2016 Jul 19;16(3):878-95 - PubMed
  40. Clin Cancer Res. 2000 Aug;6(8):2969-72 - PubMed
  41. Cell Metab. 2016 Jan 12;23 (1):27-47 - PubMed
  42. Nat Genet. 1998 Nov;20(3):291-3 - PubMed
  43. Nature. 2013 Apr 4;496(7443):101-5 - PubMed
  44. Clin Cancer Res. 2013 Feb 1;19(3):549-59 - PubMed
  45. Clin Cancer Res. 2004 Dec 15;10(24):8512-5 - PubMed
  46. Science. 2008 Sep 26;321(5897):1801-6 - PubMed
  47. Biochim Biophys Acta. 2012 Jun;1817(6):851-62 - PubMed
  48. Cell. 2012 Apr 27;149(3):656-70 - PubMed
  49. PLoS One. 2013 Nov 08;8(11):e74380 - PubMed
  50. Bioinformatics. 2009 Nov 1;25(21):2865-71 - PubMed
  51. Oncogene. 2005 Aug 18;24(35):5502-9 - PubMed
  52. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4410-7 - PubMed
  53. Cell Cycle. 2010 Oct 1;9(19):3884-6 - PubMed
  54. Nature. 2011 Nov 20;481(7381):385-8 - PubMed
  55. Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):719-24 - PubMed
  56. Nat Commun. 2015 Apr 09;6:6744 - PubMed
  57. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 - PubMed
  58. Nature. 2015 Feb 26;518(7540):495-501 - PubMed
  59. Hum Mol Genet. 2009 May 1;18(9):1578-89 - PubMed
  60. Mutat Res. 2001 Mar;488(1):9-23 - PubMed
  61. Mol Cell. 2004 Mar 26;13(6):805-15 - PubMed
  62. Cell Rep. 2014 Aug 7;8(3):754-66 - PubMed
  63. Science. 2009 May 22;324(5930):1029-33 - PubMed
  64. Nat Commun. 2013;4:2236 - PubMed
  65. Elife. 2014 Oct 01;3:null - PubMed
  66. Clin Cancer Res. 2014 Jun 15;20(12 ):3187-97 - PubMed
  67. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 - PubMed
  68. Ageing Res Rev. 2010 Nov;9 Suppl 1:S47-58 - PubMed
  69. Nature. 2016 Mar 3;531(7592):47-52 - PubMed
  70. Cancer Cell. 2013 Feb 11;23(2):143-58 - PubMed
  71. Biochim Biophys Acta. 2010 Jan;1797(1):29-37 - PubMed
  72. Bioinformatics. 2010 Dec 1;26(23):2969-76 - PubMed
  73. Cell Metab. 2015 Jan 6;21(1):81-94 - PubMed
  74. Cancer Res. 2005 Jun 15;65(12):5045-53 - PubMed
  75. Nat Commun. 2015 Jul 07;6:7686 - PubMed
  76. Sci Signal. 2009 Nov 17;2(97):pe75 - PubMed

Publication Types

Grant support