Display options
Share it on

FEBS Open Bio. 2017 Jan 11;7(2):249-264. doi: 10.1002/2211-5463.12181. eCollection 2017 Feb.

The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation.

FEBS open bio

Sofie V Hellsten, Emilia Lekholm, Tauseef Ahmad, Robert Fredriksson

Affiliations

  1. Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden; Department of Neuroscience, Functional Pharmacology Uppsala University Sweden.
  2. Department of Pharmaceutical Bioscience, Molecular Neuropharmacology Uppsala University Sweden.
  3. Department of Neuroscience, Functional Pharmacology Uppsala University Sweden.

PMID: 28174690 PMCID: PMC5292668 DOI: 10.1002/2211-5463.12181

Abstract

Amino acids are known to play a key role in gene expression regulation, and in mammalian cells, amino acid signaling is mainly mediated via two pathways, the mammalian target of rapamycin complex 1 (mTORC1) pathway and the amino acid responsive (AAR) pathway. It is vital for cells to have a system to sense amino acid levels, in order to control protein and amino acid synthesis and catabolism. Amino acid transporters are crucial in these pathways, due to both their sensing and transport functions. In this large-scale study, an immortalized mouse hypothalamic cell line (N25/2) was used to study the gene expression changes following 1, 2, 3, 5 or 16 h of amino acid starvation. We focused on genes encoding solute carriers (SLCs) and putative SLCs, more specifically on amino acid transporters. The microarray contained 28 270 genes and 86.2% of the genes were expressed in the cell line. At 5 h of starvation, 1001 genes were upregulated and 848 genes were downregulated, and among these, 47 genes from the SLC superfamily or atypical SLCs were found. Of these, 15 were genes encoding amino acid transporters and 32 were genes encoding other SLCs or atypical SLCs. Increased expression was detected for genes encoding amino acid transporters from system A, ASC, L, N, T, xc-, and y+. Using GO annotations, genes involved in amino acid transport and amino acid transmembrane transporter activity were found to be most upregulated at 3 h and 5 h of starvation.

Keywords: amino acid starvation; amino acid transporter; gene expression; solute carriers

References

  1. Mol Endocrinol. 2006 Nov;20(11):2761-72 - PubMed
  2. Physiol Genomics. 2008 Apr 22;33(2):218-29 - PubMed
  3. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7189-93 - PubMed
  4. Biochem Biophys Res Commun. 2004 Dec 3;325(1):109-16 - PubMed
  5. Pflugers Arch. 2004 Feb;447(5):784-95 - PubMed
  6. Mol Pharmacol. 1994 Apr;45(4):608-17 - PubMed
  7. Mol Cell Biol. 2000 Oct;20(19):7192-204 - PubMed
  8. J Biol Chem. 2003 Dec 12;278(50):50000-9 - PubMed
  9. BMC Neurosci. 2016 Jul 01;17(1):43 - PubMed
  10. Biochem Biophys Res Commun. 1999 Feb 16;255(2):283-8 - PubMed
  11. J Biol Chem. 2006 Jun 30;281(26):17929-40 - PubMed
  12. J Biol Chem. 1997 Jul 11;272(28):17588-93 - PubMed
  13. J Biol Chem. 2016 Jun 17;291(25):13194-205 - PubMed
  14. Endocrinol Metab Clin North Am. 2013 Mar;42(1):81-7 - PubMed
  15. Biochem Biophys Res Commun. 2004 May 28;318(2):529-34 - PubMed
  16. Mol Cell. 2000 Nov;6(5):1099-108 - PubMed
  17. Pflugers Arch. 2004 Feb;447(5):465-8 - PubMed
  18. J Biol Chem. 2007 Jul 6;282(27):19788-98 - PubMed
  19. Antioxid Redox Signal. 2000 Winter;2(4):665-71 - PubMed
  20. Pflugers Arch. 2004 Feb;447(5):532-42 - PubMed
  21. Mol Biol Evol. 2011 Apr;28(4):1531-41 - PubMed
  22. Nature. 2015 Jan 15;517(7534):302-10 - PubMed
  23. Mol Cell Biol. 1991 Dec;11(12):6059-66 - PubMed
  24. J Biol Chem. 2011 Jun 10;286(23):20500-11 - PubMed
  25. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 - PubMed
  26. J Biol Chem. 2001 Apr 13;276(15):12285-91 - PubMed
  27. Mol Endocrinol. 2008 Jun;22(6):1357-69 - PubMed
  28. Pflugers Arch. 2004 Feb;447(5):469-79 - PubMed
  29. Biochem J. 2003 Jul 1;373(Pt 1):1-18 - PubMed
  30. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  31. Curr Opin Clin Nutr Metab Care. 2013 Jan;16(1):96-101 - PubMed
  32. Biochimie. 2006 Jan;88(1):39-44 - PubMed
  33. Amino Acids. 2009 May;37(1):79-88 - PubMed
  34. J Natl Cancer Inst. 2013 Oct 2;105(19):1463-73 - PubMed
  35. Cell. 2009 Feb 6;136(3):521-34 - PubMed
  36. Amino Acids. 2008 Nov;35(4):761-70 - PubMed
  37. FEBS J. 2009 Feb;276(3):707-18 - PubMed
  38. J Biol Chem. 2004 Dec 3;279(49):50829-39 - PubMed
  39. J Biol Chem. 2004 Jan 30;279(5):3463-71 - PubMed
  40. Pflugers Arch. 2004 Feb;447(5):677-82 - PubMed
  41. Biochem J. 2006 May 1;395(3):517-27 - PubMed
  42. Mol Cell Biol. 2002 Oct;22(19):6681-8 - PubMed
  43. Annu Rev Nutr. 2004;24:377-99 - PubMed
  44. J Biol Chem. 2001 May 18;276(20):17221-8 - PubMed
  45. Genomics. 2002 Jan;79(1):95-103 - PubMed
  46. Biochem J. 2007 Feb 15;402(1):163-73 - PubMed
  47. Mol Aspects Med. 2013 Apr-Jun;34(2-3):95-107 - PubMed
  48. Annu Rev Nutr. 2005;25:59-85 - PubMed
  49. Biochem J. 2000 Oct 1;351(Pt 1):1-12 - PubMed
  50. Cell. 2015 Jul 30;162(3):478-87 - PubMed
  51. J Biol Chem. 2002 Dec 13;277(50):48107-14 - PubMed
  52. J Biol Chem. 2000 Sep 1;275(35):26976-85 - PubMed
  53. J Biol Chem. 2004 Feb 13;279(7):5288-97 - PubMed
  54. FEBS Lett. 2008 Nov 12;582(27):3811-6 - PubMed
  55. Semin Cancer Biol. 2005 Aug;15(4):254-66 - PubMed
  56. Biostatistics. 2003 Apr;4(2):249-64 - PubMed

Publication Types