Display options
Share it on

Front Immunol. 2017 Feb 03;8:66. doi: 10.3389/fimmu.2017.00066. eCollection 2017.

Tumor-Associated Lymphatic Vessels Upregulate PDL1 to Inhibit T-Cell Activation.

Frontiers in immunology

Lothar C Dieterich, Kristian Ikenberg, Timur Cetintas, Kübra Kapaklikaya, Cornelia Hutmacher, Michael Detmar

Affiliations

  1. Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich , Zurich , Switzerland.
  2. Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.

PMID: 28217128 PMCID: PMC5289955 DOI: 10.3389/fimmu.2017.00066

Abstract

Tumor-associated lymphatic vessels (LVs) play multiple roles during tumor progression, including promotion of metastasis and regulation of antitumor immune responses by delivering antigen from the tumor bed to draining lymph nodes (LNs). Under steady-state conditions, LN resident lymphatic endothelial cells (LECs) have been found to maintain peripheral tolerance by directly inhibiting autoreactive T-cells. Similarly, tumor-associated lymphatic endothelium has been suggested to reduce antitumor T-cell responses, but the mechanisms that mediate this effect have not been clarified. Using two distinct experimental tumor models, we found that tumor-associated LVs gain expression of the T-cell inhibitory molecule PDL1, similar to LN resident LECs, whereas tumor-associated blood vessels downregulate PDL1. The observed lymphatic upregulation of PDL1 was likely due to IFN-g released by stromal cells in the tumor microenvironment. Furthermore, we found that blocking PDL1 results in increased T-cell stimulation by antigen-presenting LECs

Keywords: PD1; T-cell exhaustion; abortive proliferation; immune checkpoint; lymph node; peripheral tolerance; tumor vasculature; tumor-induced immunosuppression

References

  1. Nature. 2014 Nov 27;515(7528):563-7 - PubMed
  2. PLoS One. 2014 Feb 04;9(2):e87740 - PubMed
  3. Microcirculation. 2002 Apr;9(2):133-45 - PubMed
  4. Cancer Immunol Res. 2015 Apr;3(4):313-9 - PubMed
  5. J Vis Exp. 2014 Aug 19;(90):e51803 - PubMed
  6. FASEB J. 2015 Jan;29(1):227-38 - PubMed
  7. Nat Immunol. 2011 Jun;12(6):492-9 - PubMed
  8. J Clin Invest. 2016 Sep 1;126(9):3389-402 - PubMed
  9. Blood. 2011 Apr 28;117(17):4667-78 - PubMed
  10. Blood. 2007 Feb 1;109(3):1010-7 - PubMed
  11. Blood. 2011 Jul 7;118(1):205-15 - PubMed
  12. Angiogenesis. 2014 Apr;17(2):359-71 - PubMed
  13. Nat Rev Cancer. 2014 Mar;14(3):159-72 - PubMed
  14. Mol Cancer Ther. 2015 Apr;14(4):847-56 - PubMed
  15. Blood. 2012 Dec 6;120(24):4772-82 - PubMed
  16. J Immunol. 2014 Jun 1;192(11):5002-11 - PubMed
  17. J Exp Med. 2000 Oct 2;192(7):1027-34 - PubMed
  18. Nat Commun. 2015 Apr 10;6:6771 - PubMed
  19. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt B):148-60 - PubMed
  20. J Exp Med. 2014 Jun 2;211(6):1153-66 - PubMed
  21. Biomaterials. 2013 Jul;34(21):5128-37 - PubMed
  22. N Engl J Med. 2015 Jul 9;373(2):123-35 - PubMed
  23. Oncotarget. 2015 Jul 20;6(20):18081-93 - PubMed
  24. Circulation. 2007 Oct 30;116(18):2062-71 - PubMed
  25. FASEB J. 2006 Apr;20(6):621-30 - PubMed
  26. J Exp Med. 2010 Apr 12;207(4):681-8 - PubMed
  27. Arthritis Rheum. 2011 Aug;63(8):2318-28 - PubMed
  28. Immunol Rev. 2016 May;271(1):276-92 - PubMed
  29. J Exp Med. 2010 Sep 27;207(10):2255-69 - PubMed
  30. Cell Rep. 2012 Mar 29;1(3):191-9 - PubMed
  31. Biomed Res Int. 2015;2015:851387 - PubMed

Publication Types