Display options
Share it on

Transl Oncol. 2017 Jun;10(3):357-366. doi: 10.1016/j.tranon.2017.01.011. Epub 2017 Mar 24.

Induction of Neuroendocrine Differentiation in Prostate Cancer Cells by Dovitinib (TKI-258) and its Therapeutic Implications.

Translational oncology

Shalini S Yadav, Jinyi Li, Jennifer A Stockert, Bryan Herzog, James O'Connor, Luis Garzon-Manco, Ramon Parsons, Ashutosh K Tewari, Kamlesh K Yadav

Affiliations

  1. Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574.
  2. Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574.
  3. Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574. Electronic address: [email protected].

PMID: 28342996 PMCID: PMC5369368 DOI: 10.1016/j.tranon.2017.01.011

Abstract

Prostate cancer (PCa) remains the second-leading cause of cancer-related deaths in American men with an estimated mortality of more than 26,000 in 2016 alone. Aggressive and metastatic tumors are treated with androgen deprivation therapies (ADT); however, the tumors acquire resistance and develop into lethal castration resistant prostate cancer (CRPC). With the advent of better therapeutics, the incidences of a more aggressive neuroendocrine prostate cancer (NEPC) variant continue to emerge. Although de novo occurrences of NEPC are rare, more than 25% of the therapy-resistant patients on highly potent new-generation anti-androgen therapies end up with NEPC. This, along with previous observations of an increase in the number of such NE cells in aggressive tumors, has been suggested as a mechanism of resistance development during prostate cancer progression. Dovitinib (TKI-258/CHIR-258) is a pan receptor tyrosine kinase (RTK) inhibitor that targets VEGFR, FGFR, PDGFR, and KIT. It has shown efficacy in mouse-model of PCa bone metastasis, and is presently in clinical trials for several cancers. We observed that both androgen receptor (AR) positive and AR-negative PCa cells differentiate into a NE phenotype upon treatment with Dovitinib. The NE differentiation was also observed when mice harboring PC3-xenografted tumors were systemically treated with Dovitinib. The mechanistic underpinnings of this differentiation are unclear, but seem to be supported through MAPK-, PI3K-, and Wnt-signaling pathways. Further elucidation of the differentiation process will enable the identification of alternative salvage or combination therapies to overcome the potential resistance development.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

References

  1. Clin Cancer Res. 2006 Sep 15;12(18):5268-72 - PubMed
  2. Future Oncol. 2015;11(1):39-50 - PubMed
  3. Cancer Res. 2002 Mar 1;62(5):1549-54 - PubMed
  4. Front Cell Neurosci. 2014 Oct 07;8:314 - PubMed
  5. Nat Med. 2004 Jan;10(1):33-9 - PubMed
  6. Cancer Res. 2008 Dec 1;68(23):9663-70 - PubMed
  7. Neoplasia. 2004 Nov-Dec;6(6):846-53 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Mar 13;109 (11):4044-51 - PubMed
  9. Clin Cancer Res. 2015 Oct 15;21(20):4698-708 - PubMed
  10. Genes Dev. 2010 Sep 15;24(18):1967-2000 - PubMed
  11. Am J Clin Exp Urol. 2014 Dec 09;2(4):273-85 - PubMed
  12. Curr Opin Neurobiol. 1999 Feb;9(1):65-73 - PubMed
  13. Front Oncol. 2014 Mar 25;4:60 - PubMed
  14. Urology. 1998 Apr;51(4):585-9 - PubMed
  15. Sci Transl Med. 2014 Sep 3;6(252):252ra122 - PubMed
  16. Cancer Res. 2005 Jun 15;65(12):5263-71 - PubMed
  17. Neoplasia. 2007 Aug;9(8):614-24 - PubMed
  18. Genes Cells. 2003 Jul;8(7):645-54 - PubMed
  19. N Engl J Med. 2012 Sep 27;367(13):1187-97 - PubMed
  20. Br J Cancer. 1998 Mar;77(6):855-61 - PubMed
  21. EPMA J. 2012 Jan 12;3(1):3 - PubMed
  22. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4994-9 - PubMed
  23. Science. 2009 May 8;324(5928):787-90 - PubMed
  24. J Cell Sci. 2005 Jan 15;118(Pt 2):433-46 - PubMed
  25. Nat Rev Cancer. 2010 Mar;10(3):165-80 - PubMed
  26. Autophagy. 2012 Apr;8(4):650-63 - PubMed
  27. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5330-4 - PubMed
  28. Mol Cancer. 2010 Mar 10;9:55 - PubMed
  29. Blood. 2005 Apr 1;105(7):2941-8 - PubMed
  30. J Urol. 1999 Nov;162(5):1800-5 - PubMed
  31. Prostate. 2014 Aug;74(11):1086-94 - PubMed
  32. Nat Rev Urol. 2014 Apr;11(4):213-9 - PubMed
  33. Front Mol Neurosci. 2012 Feb 02;5:5 - PubMed
  34. Trends Cell Biol. 2007 May;17(5):230-8 - PubMed
  35. Endocr Relat Cancer. 1999 Dec;6(4):503-19 - PubMed
  36. Biochem Biophys Res Commun. 1999 Apr 13;257(2):609-14 - PubMed
  37. Stem Cells Dev. 2013 Aug 1;22(15):2132-44 - PubMed
  38. Urol Oncol. 1997 Mar-Apr;3(2):67-75 - PubMed
  39. Prostate. 2011 Nov;71(15):1668-79 - PubMed
  40. Carcinogenesis. 2012 Jun;33(6):1169-77 - PubMed
  41. Curr Biol. 2014 Oct 20;24(20):2355-65 - PubMed
  42. Prostate. 2000 Feb 1;42(2):88-98 - PubMed
  43. N Engl J Med. 2011 May 26;364(21):1995-2005 - PubMed
  44. Neoplasia. 2013 Jul;15(7):761-72 - PubMed
  45. Cancer. 1996 Jul 15;78(2):357-61 - PubMed
  46. Eur J Neurosci. 2014 Oct;40(7):3021-31 - PubMed
  47. Prostate. 2006 Aug 1;66(11):1136-43 - PubMed
  48. Oncogene. 1997 Jan 30;14(4):439-49 - PubMed
  49. J Steroid Biochem Mol Biol. 1994 Sep;50(5-6):267-73 - PubMed
  50. N Engl J Med. 2013 Jan 10;368(2):138-48 - PubMed
  51. Nat Rev Clin Oncol. 2011 Jan;8(1):12-23 - PubMed
  52. Prostate. 2004 Jun 15;60(1):61-7 - PubMed
  53. Lancet. 2010 Apr 24;375(9724):1437-46 - PubMed
  54. Cancer Discov. 2011 Nov;1(6):466-8 - PubMed
  55. Histopathology. 2012 Jan;60(1):59-74 - PubMed
  56. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3644-9 - PubMed
  57. CA Cancer J Clin. 2016 Jul;66(4):271-89 - PubMed
  58. Nucleic Acids Res. 2014 Jan;42(2):999-1015 - PubMed
  59. CA Cancer J Clin. 2012 Sep-Oct;62(5):299-308 - PubMed
  60. Endocr Relat Cancer. 2007 Sep;14(3):531-47 - PubMed
  61. Prostate. 2005 Apr 1;63(1):44-55 - PubMed
  62. Neurosignals. 2012;20(3):202-20 - PubMed

Publication Types