Display options
Share it on

Front Aging Neurosci. 2017 Mar 03;9:6. doi: 10.3389/fnagi.2017.00006. eCollection 2017.

Longitudinal Analysis for Disease Progression via Simultaneous Multi-Relational Temporal-Fused Learning.

Frontiers in aging neuroscience

Baiying Lei, Feng Jiang, Siping Chen, Dong Ni, Tianfu Wang

Affiliations

  1. School of Biomedical Engineering, Shenzhen UniversityShenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen UniversityShenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen UniversityShenzhen, China; Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang UniversityFuzhou, China.
  2. School of Biomedical Engineering, Shenzhen UniversityShenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen UniversityShenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen UniversityShenzhen, China.

PMID: 28316569 PMCID: PMC5335657 DOI: 10.3389/fnagi.2017.00006

Abstract

It is highly desirable to predict the progression of Alzheimer's disease (AD) of patients [e.g., to predict conversion of mild cognitive impairment (MCI) to AD], especially longitudinal prediction of AD is important for its early diagnosis. Currently, most existing methods predict different clinical scores using different models, or separately predict multiple scores at different future time points. Such approaches prevent coordinated learning of multiple predictions that can be used to jointly predict clinical scores at multiple future time points. In this paper, we propose a joint learning method for predicting clinical scores of patients using multiple longitudinal prediction models for various future time points. Three important relationships among training samples, features, and clinical scores are explored. The relationship among different longitudinal prediction models is captured using a common feature set among the multiple prediction models at different time points. Our experimental results based on the Alzheimer's disease neuroimaging initiative (ADNI) database shows that our method achieves considerable improvement over competing methods in predicting multiple clinical scores.

Keywords: Alzheimer's disease (AD); feature selection; joint learning; longitudinal analysis; prediction

References

  1. Neurobiol Aging. 2000 Jan-Feb;21(1):19-26 - PubMed
  2. Biol Psychiatry. 2000 Jun 15;47(12):1056-63 - PubMed
  3. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 - PubMed
  4. Neuroimage. 2001 Jun;13(6 Pt 1):1140-5 - PubMed
  5. Neurobiol Aging. 2001 Sep-Oct;22(5):747-54 - PubMed
  6. Neuroimage. 2001 Dec;14(6):1361-9 - PubMed
  7. IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39 - PubMed
  8. Acta Neurol Scand Suppl. 2003;179:52-76 - PubMed
  9. Neuroimage. 2006 Jun;31(2):627-40 - PubMed
  10. Neurobiol Aging. 2008 Apr;29(4):514-23 - PubMed
  11. Neuroimage. 2007 Oct 15;38(1):13-24 - PubMed
  12. Neuroimage. 2008 Feb 1;39(3):1186-97 - PubMed
  13. J Magn Reson Imaging. 2008 Apr;27(4):685-91 - PubMed
  14. Neuroimage. 2008 Jun;41(2):277-85 - PubMed
  15. Eur J Nucl Med Mol Imaging. 2008 Jul;35(7):1357-66 - PubMed
  16. Neuroimage. 2009 Feb 15;44(4):1415-22 - PubMed
  17. Neuroimage. 2009 Oct 1;47(4):1363-70 - PubMed
  18. J Pathol. 2009 Sep;219(1):41-51 - PubMed
  19. Neuroimage. 2009 Oct 15;48(1):138-49 - PubMed
  20. Alzheimers Dement. 2010 Jan;6(1):39-53 - PubMed
  21. Alzheimers Dement. 2007 Jul;3(3):186-91 - PubMed
  22. Neurology. 2009 Jul 28;73(4):294-301 - PubMed
  23. Neuroimage. 2010 May 1;50(4):1519-35 - PubMed
  24. Lancet Neurol. 2010 Jan;9(1):119-28 - PubMed
  25. Nat Rev Neurol. 2010 Feb;6(2):67-77 - PubMed
  26. Neuroimage. 2010 Jul 15;51(4):1405-13 - PubMed
  27. Neurobiol Aging. 2010 Aug;31(8):1263-74 - PubMed
  28. Neuroimage. 2011 May 15;56(2):766-81 - PubMed
  29. Neurobiol Aging. 2011 Dec;32(12):2322.e19-27 - PubMed
  30. Neuroimage. 2011 Mar 15;55(2):574-89 - PubMed
  31. Neuroimage. 2011 Apr 1;55(3):856-67 - PubMed
  32. J Alzheimers Dis. 2011;25(2):347-57 - PubMed
  33. Psychiatry Res. 2011 Oct 31;194(1):7-13 - PubMed
  34. Neuroimage. 2012 Feb 1;59(3):2045-56 - PubMed
  35. Neuroimage. 2012 Apr 2;60(2):1106-16 - PubMed
  36. PLoS One. 2012;7(3):e33182 - PubMed
  37. Hum Brain Mapp. 2014 Apr;35(4):1305-19 - PubMed
  38. Neuroimage. 2013 Sep;78:233-48 - PubMed
  39. Neuroimage. 2014 Jan 1;84:466-75 - PubMed
  40. J Neurosci Methods. 2014 Jan 15;221:139-50 - PubMed
  41. PLoS One. 2014 Jan 29;9(1):e77810 - PubMed
  42. Sci Rep. 2014 Apr 10;4:4636 - PubMed
  43. Alzheimers Dement. 2014 Mar;10(2):e47-92 - PubMed
  44. Neuroimage. 2014 Oct 15;100:91-105 - PubMed
  45. Hum Brain Mapp. 2015 Feb;36(2):489-507 - PubMed
  46. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):401-8 - PubMed
  47. Hum Brain Mapp. 2015 May;36(5):1847-65 - PubMed
  48. Sci Rep. 2015 Jul 20;5:11259 - PubMed
  49. Sci Rep. 2015 Jul 31;5:12818 - PubMed
  50. Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:140-143 - PubMed
  51. Brain Imaging Behav. 2016 Dec;10(4):1038-1053 - PubMed
  52. Neural Plast. 2016;2016:2947136 - PubMed
  53. Front Aging Neurosci. 2016 May 17;8:77 - PubMed
  54. Front Aging Neurosci. 2016 May 18;8:112 - PubMed
  55. Front Neuroinform. 2016 Jul 13;10:25 - PubMed
  56. Neurobiol Aging. 2016 Oct;46:180-91 - PubMed
  57. Hum Brain Mapp. 2017 Mar;38(3):1191-1207 - PubMed
  58. Mach Learn Med Imaging. 2016;10019:246-253 - PubMed

Publication Types

Grant support