Display options
Share it on

Nat Chem. 2017 Mar;9(3):244-249. doi: 10.1038/nchem.2650. Epub 2016 Nov 21.

Ionic solutions of two-dimensional materials.

Nature chemistry

Patrick L Cullen, Kathleen M Cox, Mohammed K Bin Subhan, Loren Picco, Oliver D Payton, David J Buckley, Thomas S Miller, Stephen A Hodge, Neal T Skipper, Vasiliki Tileli, Christopher A Howard

Affiliations

  1. Department of Physics &Astronomy, University College London, London WC1E 6BT, UK.
  2. Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
  3. Department of Chemistry, University College London, London WC1E 6BT, UK.
  4. Cambridge Graphene Centre, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK.
  5. Institute of Materials, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

PMID: 28221358 DOI: 10.1038/nchem.2650

Abstract

Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.

References

  1. Nature. 2010 Nov 4;468(7320):72-6 - PubMed
  2. Science. 2008 Oct 17;322(5900):424-8 - PubMed
  3. J Am Chem Soc. 2016 Apr 20;138(15):5143-9 - PubMed
  4. J Am Chem Soc. 2004 Oct 20;126(41):13228-9 - PubMed
  5. Acc Chem Res. 2015 Jan 20;48(1):136-43 - PubMed
  6. Rev Sci Instrum. 2011 Apr;82(4):043704 - PubMed
  7. Nat Nanotechnol. 2011 Jun 26;6(7):439-45 - PubMed
  8. Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11093-7 - PubMed
  9. Philos Trans A Math Phys Eng Sci. 2010 Mar 28;368(1915):1333-83 - PubMed
  10. Opt Express. 2013 Feb 25;21(4):4908-16 - PubMed
  11. Science. 2011 Feb 4;331(6017):568-71 - PubMed
  12. Nat Mater. 2016 Feb;15(2):141-53 - PubMed
  13. Nano Lett. 2011 Dec 14;11(12):5111-6 - PubMed
  14. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3358-64 - PubMed
  15. J Am Chem Soc. 2012 May 23;134(20):8302-5 - PubMed
  16. J Am Chem Soc. 2008 Nov 26;130(47):15802-4 - PubMed
  17. Nanoscale. 2016 Apr 28;8(16):8810-8 - PubMed
  18. J Am Chem Soc. 2009 Mar 18;131(10):3611-20 - PubMed
  19. Nanoscale. 2015 Mar 21;7(11):4598-810 - PubMed
  20. Science. 2015 Oct 9;350(6257):1242477 - PubMed
  21. Nat Mater. 2014 Jun;13(6):624-30 - PubMed
  22. Science. 2015 Jan 16;347(6219):292-4 - PubMed
  23. Nature. 2009 Nov 19;462(7271):339-41 - PubMed
  24. Phys Rev Lett. 2011 May 6;106(18):187002 - PubMed

Publication Types