Display options
Share it on

J Contemp Brachytherapy. 2017 Feb;9(1):7-13. doi: 10.5114/jcb.2017.66043. Epub 2017 Feb 15.

Radiation dose to the left anterior descending coronary artery during interstitial pulsed-dose-rate brachytherapy used as a boost in breast cancer patients undergoing organ-sparing treatment.

Journal of contemporary brachytherapy

Marcin Sinacki, Krystyna Serkies, Rafał Dziadziuszko, Magdalena Narkowicz, Joanna Kamińska, Joanna Lipniewicz

Affiliations

  1. Department of Oncology and Radiotherapy, Medical University of Gdansk.
  2. Department of Oncology and Radiotherapy, Medical University of Gdansk; Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Poland.

PMID: 28344598 PMCID: PMC5346609 DOI: 10.5114/jcb.2017.66043

Abstract

PURPOSE: To assess dose received by the left anterior descending (LAD) coronary artery during interstitial pulsed-dose-rate brachytherapy (PDR-BT) boost for left-sided breast cancer patients undergoing organ-sparing treatment.

MATERIAL AND METHODS: Thirty consecutive pT1-3N0-1M0 breast cancer patients boosted between 2014 and 2015 with 10 Gy/10 pulses/hour PDR-BT following a computed tomography (CT) simulation with the multi-catheter implant were included. The most common localization of primary tumor were upper quadrants. Patients were implanted with rigid tubes following breast conserving surgery and whole breast external beam irradiation (40 Gy/15 or 50 Gy/25 fractions). Computed tomography scans were retrospectively reviewed and LADs were contoured without and with margin of 5 mm (LAD

RESULTS: The mean D

CONCLUSIONS: Interstitial multi-catheter PDR-BT used as a boost for left-sided breast cancer is generally associated with low dose to the LAD. However, higher dose in individual cases may require alternative approaches.

Keywords: LAD; breast carcinoma; pulsed-dose-rate brachytherapy

References

  1. Radiother Oncol. 2015 Jan;114(1):73-8 - PubMed
  2. Acta Oncol. 2013 May;52(4):703-10 - PubMed
  3. Breast Cancer. 2017 Jan;24(1):52-62 - PubMed
  4. Acta Oncol. 2016 Aug;55(8):959-63 - PubMed
  5. J Clin Oncol. 2012 Feb 1;30(4):380-6 - PubMed
  6. Int J Radiat Oncol Biol Phys. 2011 Nov 1;81(3):894-900 - PubMed
  7. Radiother Oncol. 2015 Jan;114(1):66-72 - PubMed
  8. J Med Imaging Radiat Oncol. 2016 Aug;60(4):545-53 - PubMed
  9. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S77-85 - PubMed
  10. Radiother Oncol. 2012 May;103(2):133-42 - PubMed
  11. J Contemp Brachytherapy. 2015 Feb;7(1):23-8 - PubMed
  12. Radiother Oncol. 2013 Aug;108(2):254-8 - PubMed
  13. Clin Oncol (R Coll Radiol). 2013 Mar;25(3):147-52 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):1698-705 - PubMed
  15. Lancet Oncol. 2015 Jan;16(1):47-56 - PubMed
  16. Lancet. 2016 Jan 16;387(10015):229-38 - PubMed
  17. Springerplus. 2016 May 28;5(1):688 - PubMed
  18. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S10-9 - PubMed
  19. J Contemp Brachytherapy. 2016 Apr;8(2):143-9 - PubMed
  20. J Contemp Brachytherapy. 2015 Aug;7(4):273-9 - PubMed
  21. Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1061-8 - PubMed
  22. Radiother Oncol. 2015 Dec;117(3):459-66 - PubMed
  23. Int J Radiat Oncol Biol Phys. 2008 Oct 1;72(2):501-7 - PubMed
  24. Int J Radiat Oncol Biol Phys. 2011 Jan 1;79(1):10-8 - PubMed
  25. Int J Radiat Oncol Biol Phys. 2013 Aug 1;86(5):816-8 - PubMed
  26. Breast. 2011 Oct;20(5):481; author reply 482 - PubMed
  27. Front Oncol. 2014 Oct 22;4:284 - PubMed
  28. Radiat Oncol. 2015 Sep 22;10:200 - PubMed
  29. N Engl J Med. 2013 Mar 14;368(11):987-98 - PubMed

Publication Types