Display options
Share it on

Future Sci OA. 2017 Jan 16;3(1):FSO157. doi: 10.4155/fsoa-2016-0067. eCollection 2017 Mar.

Quantitative analysis of lipids: a higher-throughput LC-MS/MS-based method and its comparison to ELISA.

Future science OA

Adarsh S Gandhi, David Budac, Tanzilya Khayrullina, Roland Staal, Gamini Chandrasena

Affiliations

  1. Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA, 215 College Road, Paramus, NJ, USA; Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA, 215 College Road, Paramus, NJ, USA.
  2. Neuroinflammation Disease Biology Unit, In Vitro Biology, Lundbeck Research USA, 215 College Road, Paramus, NJ, USA; Neuroinflammation Disease Biology Unit, In Vitro Biology, Lundbeck Research USA, 215 College Road, Paramus, NJ, USA.

PMID: 28344822 PMCID: PMC5351511 DOI: 10.4155/fsoa-2016-0067

Abstract

AIM: Lipids such as prostaglandins, leukotrienes and thromboxanes are released as a result of an inflammatory episode in pain (central and peripheral).

METHODOLOGY & RESULTS: To measure these lipids as potential mechanistic biomarkers in neuropathic pain models, we developed a higher-throughput LC-MS/MS-based method with simultaneous detection of PGE2, PGD2, PGF2α, LTB4, TXB2 and 2-arachidonoyl glycerol in brain and spinal cord tissues. We also demonstrate that the LC-MS/MS method was more sensitive and specific in differentiating PGE2 levels in CNS tissues compared with ELISA.

CONCLUSION: The ability to modify the LC-MS/MS method to accommodate numerous other lipids in one analysis, demonstrates that the presented method offers a cost-effective and more sensitive alternative to ELISA method useful in drug discovery settings.

Keywords: ELISA; LC–MS/MS; higher-throughput; lipids; neuropathic pain

Conflict of interest statement

Financial & competing interests disclosure This work was supported by internal budget of Lundbeck Research Inc. USA as part of the CNS drug discovery program. The authors have no other relevant affili

References

  1. J Chromatogr A. 2015 Apr 24;1391:40-8 - PubMed
  2. Rapid Commun Mass Spectrom. 2006;20(20):3023-9 - PubMed
  3. J Pharm Biomed Anal. 2014 Aug 5;96:256-62 - PubMed
  4. Br J Anaesth. 2001 Jul;87(1):3-11 - PubMed
  5. Stroke. 1985 Jan-Feb;16(1):10-4 - PubMed
  6. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Nov 5;826(1-2):188-97 - PubMed
  7. Bioorg Med Chem Lett. 2009 Jan 15;19(2):497-501 - PubMed
  8. Curr Opin Neurol. 2005 Jun;18(3):315-21 - PubMed
  9. J Lipid Res. 2011 Apr;52(4):850-9 - PubMed
  10. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Aug 1;932:59-65 - PubMed
  11. Glia. 2011 Feb;59(2):208-18 - PubMed
  12. Br J Pharmacol. 2006 Jan;147 Suppl 1:S232-40 - PubMed
  13. Biol Pharm Bull. 2011;34(8):1170-3 - PubMed
  14. Bioanalysis. 2009 Nov;1(8):1365-74 - PubMed
  15. J Chromatogr B Analyt Technol Biomed Life Sci. 2013 Apr 15;925:54-62 - PubMed
  16. Arterioscler Thromb Vasc Biol. 2011 May;31(5):986-1000 - PubMed
  17. Cancer Epidemiol Biomarkers Prev. 2010 Jan;19(1):292-300 - PubMed
  18. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 25;803(2):267-77 - PubMed
  19. J Pharmacol Exp Ther. 1988 Nov;247(2):671-9 - PubMed
  20. J Med Chem. 2014 Jun 12;57(11):4454-65 - PubMed
  21. Anal Biochem. 2008 Jan 1;372(1):41-51 - PubMed
  22. J Chromatogr B Biomed Sci Appl. 1997 Sep 26;698(1-2):9-15 - PubMed
  23. Pain. 1988 Apr;33(1):87-107 - PubMed
  24. Anal Bioanal Chem. 2014 Nov;406(28):7103-16 - PubMed
  25. Science. 2013 Jan 11;339(6116):166-72 - PubMed
  26. Biochim Biophys Acta. 1985 Aug 22;836(1):125-33 - PubMed
  27. J Neurochem. 2000 Oct;75(4):1539-47 - PubMed

Publication Types