Display options
Share it on

Neurogenesis (Austin). 2014 Jul 28;1(1):e29950. doi: 10.4161/neur.29950. eCollection 2014.

Establishment of a radial glia-like mouse fetal hypothalamic neural stem cell line (AC1) able to differentiate into neuroendocrine cells.

Neurogenesis (Austin, Tex.)

Anna Cariboni, Luciano Conti, Valentina Andrè, Davide Aprile, Jacopo Zasso, Roberto Maggi

Affiliations

  1. Dipartimento di Scienze Farmacologiche e Biomolecolari; Sez. Biomedicina e Endocrinologia; ?Università degli Studi di Milano; Milan, Italy; Centro Interuniversitario per lo studio delle Malattie della Riproduzione (CIRMAR); Università degli Studi di Milano; Milan, Italy.
  2. Centro per la Biologia Integrata (CIBIO); Università degli Studi di Trento; Trento, Italy.
  3. Dipartimento di Scienze Farmacologiche e Biomolecolari; Sez. Biomedicina e Endocrinologia; ?Università degli Studi di Milano; Milan, Italy.

PMID: 28255570 PMCID: PMC5322806 DOI: 10.4161/neur.29950

Abstract

The present study describes the generation and the characterization of a stable cell line of neural stem cells derived from embryonic mouse hypothalamus. These cells (AC1) grow as an adherent culture in defined serum-free medium and express typical markers of neurogenic radial glia and of hypothalamic precursors. After prolonged expansion, AC1 cells may be efficiently induced to differentiate into neurons and astroglial cells in vitro and start to express some hormonal neuropeptides, like TRH, CRH, and POMC. Based on the capabilities of AC1 cells to be stably expanded and to develop neuroendocrine lineages in vitro, these cells might represent a novel tool to elucidate the mechanisms involved in the development of the hypothalamus and in the specific differentiation of neuroendocrine neurons.

Keywords: development; hypothalamus; neuroendocrinology; stem cells

References

  1. Brain Res. 2007 Oct 12;1174:28-38 - PubMed
  2. Genes Dev. 1999 Nov 1;13(21):2787-800 - PubMed
  3. Annu Rev Neurosci. 2001;24:677-736 - PubMed
  4. J Histochem Cytochem. 2003 Jan;51(1):41-54 - PubMed
  5. Expert Opin Drug Discov. 2013 Sep;8(9):1083-94 - PubMed
  6. Prog Neurobiol. 2007 Sep;83(1):53-67 - PubMed
  7. Mol Cell Endocrinol. 2010 Jul 8;323(1):115-23 - PubMed
  8. Brain Res Dev Brain Res. 1988 Nov 1;44(1):95-108 - PubMed
  9. Cell Mol Life Sci. 2011 May;68(10):1769-83 - PubMed
  10. Genes Dev. 1998 Oct 15;12(20):3264-75 - PubMed
  11. Cell Death Differ. 2008 Dec;15(12):1847-56 - PubMed
  12. Brain Res Brain Res Rev. 1997 Sep 19;24(2-3):255-91 - PubMed
  13. Neurobiol Dis. 2009 May;34(2):320-31 - PubMed
  14. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11796-801 - PubMed
  15. Mol Endocrinol. 2006 Jul;20(7):1623-32 - PubMed
  16. Dev Dyn. 2008 Sep;237(9):2295-303 - PubMed
  17. Nat Neurosci. 2012 Mar 25;15(5):700-2 - PubMed
  18. PLoS Biol. 2005 Sep;3(9):e283 - PubMed
  19. J Toxicol Environ Health B Crit Rev. 2011;14(5-7):292-9 - PubMed
  20. Development. 2005 Dec;132(23):5185-97 - PubMed
  21. Nat Rev Neurosci. 2010 Mar;11(3):176-87 - PubMed
  22. Genes Dev. 1995 Dec 15;9(24):3122-35 - PubMed
  23. Development. 2007 Nov;134(21):3771-80 - PubMed
  24. Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E563-7 - PubMed
  25. PLoS One. 2009;4(2):e4392 - PubMed
  26. J Neurosci. 2004 Mar 24;24(12):2886-97 - PubMed
  27. Regen Med. 2006 Jan;1(1):111-8 - PubMed
  28. Genes Cells. 2001 Apr;6(4):361-74 - PubMed

Publication Types