Display options
Share it on

Sci Rep. 2017 Mar 20;7:44770. doi: 10.1038/srep44770.

Ultra-wide range field-dependent measurements of the relaxivity of Gd.

Scientific reports

Ching-Yu Chou, Mouna Abdesselem, Cedric Bouzigues, Minglee Chu, Angelo Guiga, Tai-Huang Huang, Fabien Ferrage, Thierry Gacoin, Antigoni Alexandrou, Dimitris Sakellariou

Affiliations

  1. Departement de Chimie, Ecole Normale Superieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolecules (LBM), 24 rue Lhomond, 75005 Paris, France.
  2. Sorbonne Universites, UPMC Univ Paris 06, Ecole Normale Superieure, CNRS, Laboratoire des Biomolecules (LBM), Paris, France.
  3. NIMBE, CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
  4. Laboratoire d'Optique et Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau, France.
  5. Institute of Physics, Academia Sinica, Nankang, Taipei, 115, ROC, Taiwan.
  6. Institute of Biomedical Science, Academia Sinica, Nankang, Taipei, 115, ROC, Taiwan.
  7. Laboratoire de Physique de la Matière Condensée, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France.

PMID: 28317892 PMCID: PMC5357940 DOI: 10.1038/srep44770

Abstract

The current trend for Magnetic Resonance Imaging points towards higher magnetic fields. Even though sensitivity and resolution are increased in stronger fields, T1 contrast is often reduced, and this represents a challenge for contrast agent design. Field-dependent measurements of relaxivity are thus important to characterize contrast agents. At present, the field-dependent curves of relaxivity are usually carried out in the field range of 0 T to 2 T, using fast field cycling relaxometers. Here, we employ a high-speed sample shuttling device to switch the magnetic fields experienced by the nuclei between virtually zero field, and the center of any commercial spectrometer. We apply this approach on rare-earth (mixed Gadolinium-Europium) vanadate nanoparticles, and obtain the dispersion curves from very low magnetic field up to 11.7 T. In contrast to the relaxivity profiles of Gd chelates, commonly used for clinical applications, which display a plateau and then a decrease for increasing magnetic fields, these nanoparticles provide maximum contrast enhancement for magnetic fields around 1-1.5 T. These field-dependent curves are fitted using the so-called Magnetic Particle (MP) model and the extracted parameters discussed as a function of particle size and composition. We finally comment on the new possibilities offered by this approach.

References

  1. J Am Chem Soc. 2013 Dec 11;135(49):18665-72 - PubMed
  2. Angew Chem Int Ed Engl. 2007;46(28):5397-401 - PubMed
  3. Angew Chem Int Ed Engl. 2005 Feb 25;44(10):1480-4 - PubMed
  4. Magn Reson Med. 2006 Dec;56(6):1274-82 - PubMed
  5. ACS Nano. 2014 Mar 25;8(3):2602-8 - PubMed
  6. Dalton Trans. 2013 Aug 14;42(30):10725-34 - PubMed
  7. Biomaterials. 2010 Apr;31(12):3287-95 - PubMed
  8. Magn Reson Med. 2002 Jul;48(1):21-6 - PubMed
  9. Contrast Media Mol Imaging. 2009 Mar-Apr;4(2):89-100 - PubMed
  10. ACS Nano. 2014 Nov 25;8(11):11126-37 - PubMed
  11. Invest Radiol. 2005 Nov;40(11):715-24 - PubMed
  12. Contrast Media Mol Imaging. 2010 Mar-Apr;5(2):105-11 - PubMed
  13. J Biomol NMR. 2012 Feb;52(2):159-77 - PubMed
  14. Phys Chem Chem Phys. 2010 Jun 14;12(22):5830-40 - PubMed
  15. Nanotechnology. 2011 Jul 22;22(29):295103 - PubMed
  16. Chem Commun (Camb). 2011 Dec 28;47(48):12858-60 - PubMed
  17. Biomaterials. 2012 Aug;33(24):5865-74 - PubMed
  18. Sci Rep. 2015 Jul 17;5:12200 - PubMed
  19. Magn Reson Imaging. 1995;13(3):401-20 - PubMed
  20. J Biomol NMR. 2016 Nov;66(3):187-194 - PubMed
  21. Magn Reson Med. 1993 Dec;30(6):696-703 - PubMed
  22. Magn Reson Med. 1995 Aug;34(2):227-33 - PubMed
  23. Chimia (Aarau). 2011;65(9):696-8 - PubMed
  24. Appl Magn Reson. 2016;47:237-246 - PubMed
  25. J Magn Reson. 2012 Jan;214(1):302-8 - PubMed
  26. J Mater Chem B Mater Biol Med. 2013 Jun 14;1(22):2818-2828 - PubMed
  27. J Chem Phys. 2014 May 7;140(17 ):174504 - PubMed
  28. Langmuir. 2008 Oct 7;24(19):11018-26 - PubMed
  29. Angew Chem Int Ed Engl. 2014 Sep 8;53(37):9766-70 - PubMed
  30. Nat Nanotechnol. 2009 Sep;4(9):581-5 - PubMed
  31. Magn Reson Med. 2001 Nov;46(5):917-22 - PubMed
  32. Magn Reson Med. 2012 Jul;68(1):272-7 - PubMed
  33. Chem Rev. 1999 Sep 8;99(9):2293-352 - PubMed

Publication Types