Display options
Share it on

Sci Rep. 2017 Mar 20;7:44619. doi: 10.1038/srep44619.

Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy.

Scientific reports

Andriy Chmyrov, Marcel Leutenegger, Tim Grotjohann, Andreas Schönle, Jan Keller-Findeisen, Lars Kastrup, Stefan Jakobs, Gerald Donnert, Steffen J Sahl, Stefan W Hell

Affiliations

  1. Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany.
  2. Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany.
  3. University of Göttingen, Medical Faculty, Department of Neurology, Robert-Koch-Str. 40, 37075 Göttingen, Germany.

PMID: 28317930 PMCID: PMC5357911 DOI: 10.1038/srep44619

Abstract

Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between 'on' and 'off' states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm

References

  1. Biophys J. 2008 Sep 15;95(6):2989-97 - PubMed
  2. IUBMB Life. 2012 Jun;64(6):482-91 - PubMed
  3. Curr Opin Neurobiol. 2004 Oct;14(5):599-609 - PubMed
  4. Biophys J. 2011 Jun 22;100(12):L63-5 - PubMed
  5. Cell. 2010 Dec 23;143(7):1047-58 - PubMed
  6. Elife. 2012 Dec 31;1:e00248 - PubMed
  7. Nature. 2011 Sep 11;478(7368):204-8 - PubMed
  8. Elife. 2016 Jun 29;5:null - PubMed
  9. Sci Rep. 2016 Jan 06;6:18459 - PubMed
  10. Opt Express. 2008 Jun 9;16(12):8519-31 - PubMed
  11. Opt Express. 2006 Nov 13;14(23):11277-91 - PubMed
  12. Opt Express. 2015 Jan 12;23(1):211-23 - PubMed
  13. Nat Biotechnol. 2011 Sep 11;29(10):942-7 - PubMed
  14. Cell Tissue Res. 2015 Apr;360(1):151-78 - PubMed
  15. Science. 2007 May 25;316(5828):1153-8 - PubMed
  16. Opt Lett. 1994 Jun 1;19(11):780-2 - PubMed
  17. Chemphyschem. 2014 Mar 17;15(4):655-63 - PubMed
  18. Biophys J. 2008 Jun;94(12):4957-70 - PubMed
  19. Nat Methods. 2013 Aug;10 (8):737-40 - PubMed
  20. Biophys J. 2013 Jul 2;105(1):L01-3 - PubMed
  21. Chemphyschem. 2014 Mar 17;15(4):756-62 - PubMed
  22. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17565-9 - PubMed
  23. Nat Biotechnol. 2003 Nov;21(11):1347-55 - PubMed
  24. Nat Methods. 2015 Jun;12(6):515-8 - PubMed
  25. Neuron. 2012 Sep 20;75(6):992-1000 - PubMed
  26. Science. 2012 Feb 3;335(6068):551 - PubMed
  27. ACS Nano. 2015 Oct 27;9(10):9528-41 - PubMed
  28. Opt Express. 2014 Mar 10;22(5):5581-9 - PubMed
  29. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E135-43 - PubMed

Publication Types